M241-MATLAB (P. Staley) Lesson Two Working with Matrices and Arrays

Do the following:

1. Open MATLAB, choose MATLAB Help to open the help window, choose "Matrices and Arrays" from the content tab of the Help Navigator Window.

2. Read and study the "Working with Matrices" section. As a guide for study, fill out the student notes portion below.

 3.1^1 Use a text editor to create a text file for the matrix:

0.700.150.150.200.800.150.100.050.70

Save the text file as P.dat

3.2 From MATLAB load the matrix into the P matrix.

3.3 Compute the matrix products

[15,000]	[15,000]	[15,000]	[15,000]
P 20,000 ,	P^2 20,000 ,	P^{5} 20,000 , and	P^{10} 20,000
65,000	65,000	65,000	65,000

3.4 Print out a clean version of the Command window showing the results from step 3.3.

4. Use the MATLAB text editor to create a file containing the command window commands from steps 3.2 and 3.3 above. Save the file as larsonE4.m. Go back to the command window and invoke the M-file with

LarsonE4

print the command window results and turn them in.

5. Read the Linear Algebra Definitions document on the <u>www.staley-classes.org</u> website and answer the questions in the Lesson two notes below.

6. Read and study the "More About Matrices and Arrays" section of the MATLAB Help. As a guide for study, fill out the student notes portion below.

Exam Two is based on the material on these pages. Let your instructor know when you are ready to take exam two.

¹ If you are in the Linear Algebra class you will find the computations in item 3 correspond to the consumer preference model from the Larson Intro to Linear Algebra 4th ed. (examples 2 and 3 from section 2.5).

Lesson Two Student Notes

Working with Matrices

_____·

MATLAB provides four functions that generate basic matrices. They are

The MATLAB function call that creates an n-by-n array filled with zeros is

_____, ____, and

The MATLAB function call that creates an m-by-n array filled with zeros is

The MATLAB function call that creates an array filled with zeros with the same

dimensions as matrix A is ______.

.

The MATLAB function call that creates an n-by-n array filled with ones is

The MATLAB function call that creates an m-by-n array filled with ones is

The MATLAB function call that creates an array filled with ones with the same

dimensions as matrix A is _____.

The ______ function generates arrays of random numbers whose elements are

uniformly distributed in the interval _____.

_____ will generate an n-by-n array of uniformly distributed random numbers in

the range _____.

____.

______ will generate an m-by-n array of uniformly distributed random numbers in the range ______.

will generate an array of uniformly distributed random numbers that
has the same dimensions as the matrix A.
The function generates arrays of random numbers whose elements are
normally distributed with mean and standard deviation
will generate an m-by-n array of distributed random
numbers with mean and standard deviation
The load function reads files containing matrices generated by earlier
MATLAB sessions, or reads files containing numeric data. The text file
should be organized as a rectangular table of numbers, separated by, with one
per line, and an equal number of elements in each
You can create your own matrices using M-files, which are text files containing
Use the MATLAB Editor or another text editor to create a
file containing the same statements you would type at the
Save the file under a name that ends in
is the process of joining small matrices to make bigger ones. The
pair of, is the operator.
For example: if P is the matrix
0.70 0.15 0.15
0.20 0.80 0.15

0.10 0.05 0.70

Then [P-eye(3), zeros(3,1)] would be the _____ by ____ matrix:

You can delete a rows or columns by assigning them to _____.

For example if we start A as the matrix:

	-0.3	0.15	0.15	0
A =	0.20	-0.2	0.15	0
	0.10	0.05	-0.3	0

then

A(:, end) = []

leaves A as

A =

If we continue the assignment to _____ using only a single subscript then the operation behaves as if the original matrix is first reshaped into a ______. So that with A as previously A([1, 5,9]) = []

now leaves

A =

Linear Algebra Notes

The **matrix multiplication** A B requires that the number of ______ in A must be the same as the number of ______ in B, i.e. if A is m-by-p the B must be _____ by _____. Alternately we could say that the length of the ______ of A must be the same as the length of the ______ of B. The result of multiplying an m-by-p matrix A times a ______.by-n matrix B is an _____ by ____ matrix C in which the (i,j) element is the sum of the _____ of the elements of the _____ of A and the j_____ of B. For example

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} * \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$
 yields the ____ by ___ product

Matrix multiplication is not commutative, i.e. generally A*B B*A.

The common method of **solving a system of linear equations** is to write the augmented matrix for the system and then use elementary row operations to reach an equivalent

system of equations in ______. This method is called the Gauss-Jordan

elimination method. The MATLAB function that does the reduction to

______ form is ______. The solutions to the system of

equations can be read from the _____ form.

The inverse of a square matrix A is a matrix B for which ______ where

I is the ______ matrix. If a square matrix A has an inverse we call it invertible

or ______ otherwise it is ______ or noninvertible. The inverse

matrix can also be used to solve systems of equations:

If $A^*X = C$ and A is an n by n invertible matrix then $X = B^*C$ where B is the inverse of

A.

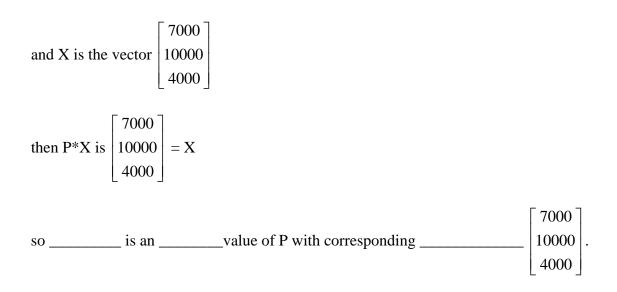
If square matrix A has a $\hfill \lambda$ and a $\hfill X$ for which

 $A^*X = \lambda X$

Then we say λ is an ______ for A with the associated ______ X.

For example: if P is the matrix

 $\begin{bmatrix} 0.70 & 0.15 & 0.15 \\ 0.20 & 0.80 & 0.15 \\ 0.10 & 0.05 & 0.70 \end{bmatrix}$



More About Matrices and Arrays

Matrix operations from Linear Algebra

_____ returns the determinant of the square matrix A.

______ returns the matrix that is row equivalent to A and is in reduced row echelon

form.

_____ returns the inverse matrix of a nonsingular matrix A.

_____ returns a column vector of the eigenvalues of square matrix A.

[name1, name2] = eig(A) returns the _____ as the columns of name1, and

the corresponding ______ as the diagonals of the diagonal matrix name2.

Array Operator Notes

Arithmetic operations on arrays are done ______ by _____. This means that addition and subtraction are the same for arrays and matrices, but that multiplicative operations are different. MATLAB uses a ______, as part of the notation for multiplicative array operations. The list of array operators includes

+	Addition
-	Subtraction
	Element-by-element multiplication
	Element-by-element division
	Element-by-element left division
	^Element-by-element power
	Unconjugated array transpose

Suppose n is the column vector n = (0:3)';

Then pows = $[n n.^2 2.^n]$

builds the table:

The elementary math functions operate on arrays element by element.

x = (1:0.1:2)';

 $\log s = [x \log 10(x)]$

builds a _____ of logarithms.

Matrices and scalars can be combined in several different ways. For example, a scalar is subtracted from a matrix by subtracting it from each element.

With scalar expansion, MATLAB assigns a specified scalar to all indices in a range. For

example, B(1:2,2:3) = 0 has the effect of

Logical Subscripting

The logical vectors created from logical and relational operations can be used to

reference _____. Suppose X is an ordinary matrix and L is a matrix of the same

size that is the result of some ______ operation. Then X(L) specifies the elements

of X where the elements of L are _____.

The find Function

The find function determines the ______ of array elements that meet a given logical condition. In its simplest form, find returns a ______ vector of _____.