M260 2.1 P. Staley	Predicates and	Quantified Stateme	ents I	
A	is a sentence that contains a finite number of			
and becomes a st	atement when specific val	ues are substituted for th	ne	
The domain of a		is the set	of all values that may	
be substituted in	place of the	·		
Consider the pre-	dicate P, " is a student a	tt". P(x,y) becomes "	x is a student at y".	
The	of the first variable,	x, is the set of	and the	
	of the second variable y	is the set of		
P(x,y) is not a sta	atement because it			
P(Iliana, Southw	estern College) is the state	ement		
		P(Iliana, Stanfo	ord) is the statement	
If Q(x) is a	and x	has	D, then the truth	
set of i	s the set of elements of	that make Q(x)	when	
substituted for x.				
The truth set of (Q(x) is denoted			
$\{x \in D \mid Q$	(x)}			
which is read: "				
Let P(x) and Q(x) be	and suppose the com	non domain of x is D.	
The notation P(x	$\Rightarrow Q(x)$ means that			
		The notation P(x)	\Leftrightarrow Q(x) means that	

To change a predicate into a statement we can assign values to the	_ ·
Another way to obtain statements from predicates is to add	
The symbol \forall denotes "" and is called the	
Examples: " \forall human beings x, x is mortal" or " \forall x \in (the set of	
human beings), x is mortal".	
Let Q(x) be a predicate and D the of x. A universal statement is a	
statement of the form "" It is defined to be tr	ue
It is defined to be false	
A value of x for which	
Q(x) is false is called a The method of	
consists of showing the truth of the predicate separately	,
for each individual element of the domain.	
The symbol ∃ denotes "" and is called the	
Example: " \exists a person s such that s is passing Math 260 this	
semester". Let Q(x) be a predicate and D the of x. An existential stateme	ent
is a statement of the form "" It is defined to	be
true	•
It is defined to be false	

The universal conditional statement has the form

Write the following as formal universal conditional statements:

a. If a real number has a terminating decimal representation then it is a rational number.

b. All students are hard workers.

c. There are no bad teachers at Southwestern College.

The negation of a statement of the form: $\forall x \text{ in } D, Q(x)$

is logically equivalent to a statement of the form

Symbolically: $\sim (\forall x \in D, Q(x)) \equiv$ _____.

The negation of a universal statement ("all are") is logically equivalent to an existential statement ("some are not").

.

The negation of a statement of the form: $\exists x \text{ in } D \text{ such that } Q(x)$

is logically equivalent to a statement of the form

Symbolically: $\sim (\exists x \in D \text{ such that } Q(x)) \equiv$ _____.

The negation of an existential statement ("some are") is logically equivalent to a universal statement ("all are not").

Give the formal negation of the statement: \forall even integers n, n² ? n.

Give the formal negation of the statement: \exists a student s such that s does not have an email account.

The negation of the universal quantifier is given as

 $\sim(\forall x, \text{ if } P(x) \text{ then } Q(x)) \equiv$

or symbolically

Write a formal negation for: \forall student s, if s filled out the notes sheet for exam one then s

_____ _____ ·______ ·______ ·______ ·____ ·___ ·____ ·___ ·____ ·____ ·____ ·___ ·____ ·____ ·____ ·____ ·___ ·___ ·____ ·____ ·____ ·____ ·____ ·____ ·____ ·____ ·___ ·___ ·___ ·___ ·___ ·____ ·____ ·____ ·____ ·____ ·____ ·____ ·____ ·____ ·____ ·____ ·____ ·___ ·____ ·___ ·___ ·___ ·___ ·____ ·____ ·____ ·____ ·____ ·___ ·___ ·___ ·___ ·___ ·___ ·___ ·___ ·___ ·___ ·___ ·___ ·___ ·____ ·____ ·___ ·___ ·___ ·___ ·___ ·___ ·___ ·__

got at least a C on exam one.