Math 250	3.1-3.6 Concepts
P. Staley	

1. The calculus can be used to find where a function f is increasing by finding where

2. The calculus can be used to find where a function f is concave upward by finding where

3. The second derivative test says that the point (c, f(c)) is a relative maximum of f(x) if

_____ and _____.

4. A good place to look for inflection points is where

5. The calculus can be used to find where a function f is decreasing by finding where

6. The absolute maximum of a differential function on a closed interval occurs at either

_____ or at _____.

7. If f''(3) = 2 you can expect f(x) to be _____ at x = 3.

8. One can estimate the value of the derivative of a function from its graph because the derivative is the

9. If the derivative of f(x) is negative on the entire interval (2,4) then the function f(x) is

10. If the derivative of the continuous function f(x) changes from negative to positive at x = 3 then

11. If the second derivative of the continuous function f(x) changes from negative to positive at x = 3 then
