M260 1.5
P. Staley Positional Number Systems

7,346.2 written as powers of ten is
$7,346.2=\ldots .10+\ldots .10+\ldots \cdot 10+\ldots \cdot 10+\ldots \cdot 10$
Forty-five written as powers of two is
$45=$ \qquad $\cdot 2+$ \qquad $\cdot 2$ \qquad .2 \qquad $2+$ \qquad $+$ \qquad $\cdot 2$

In binary notation 45_{10} would be written as \qquad . A binary digit is called a \qquad .

The binary notation for the integers zero through nine is

decimal	binary
0_{10}	
1_{10}	
2_{10}	
3_{10}	
4_{10}	
5_{10}	
6_{10}	
7_{10}	
8_{10}	
9_{10}	

Some of the powers of two used for position values in binary notation are

power of 2	2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
decimal form											

One way to convert numbers from binary notation to decimal notation is to add the appropriate powers of two. Convert 101110_{2} to decimal by adding the appropriate powers of two
\qquad

To convert from decimal to binary we start by finding the \qquad power of two that is less than or equal to our number. That determines the \qquad one bit. To get the remaining part we subtract that power of two from our number and repeat the process with the remainder to find the next one bit, etcetera. For example to convert 141_{10} to binary we note that the largest power of two that is less than 141_{10} is
\qquad . So the leading one bit is in the 2 position. The remaining part is then $141_{10}-$ \qquad $=$ \qquad . The highest power of two that is less than or equal to
\qquad is \qquad . So the next one bit is in the 2 position. Then
\qquad - \qquad $=$ \qquad whose binary representation is \qquad .

So 141_{10} in binary is \qquad .

When adding two numbers in binary notation each column will have zero, one, two, or three ones. These result in zero with no carry, one with \qquad , \qquad with \qquad , or \qquad with \qquad , respectively.

Add the binary numbers and show all the carries
carry row
0101011
0101111
\qquad

Subtract the numbers in binary notation (show the borrowing) borrow row

011000
-1011

The two's complement of c in n-bit arithmetic is the binary representation of \qquad .

To form the two's complement of a binary number simply \qquad and then add
\qquad .

In 8-bit unsigned arithmetic the range of integers represented is \qquad to \qquad .

In 8-bit two's complement arithmetic the range of integers represented is \qquad to
\qquad .

Write the numbers 27 and -13 in 8-bit two's complement form and then add them:

$$
\begin{aligned}
& 27_{10}= \\
& -13_{10}= \\
& \text { sum }=\square
\end{aligned}
$$

Decimal—Hexadecimal—Binary equivalents

decimal	hexadecimal	binary
0		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		

To convert from hexadecimal to decimal add the weighted position values:

$$
\begin{aligned}
2 \mathrm{C} 3_{16} & =_\cdot 16^{2}+\ldots \quad 16^{1}+\ldots \quad \cdot 16^{0} \\
& =
\end{aligned}
$$

To convert from hexadecimal to binary notation convert each digit individually using its four bit representation:

$$
\begin{aligned}
& 3 \mathrm{D} \mathrm{C} 4_{16} \\
&= \\
& \\
& \hline
\end{aligned}
$$

To convert from binary to hexadecimal mark off every \qquad bits starting from the right then convert each ___ bits to the corresponding hexadecimal digit:
0010110111000101_{2}
\qquad

