Exercise Set 1.1

Appendix B contains either full or partial solutions to all exercises with blue numbers. When the solution is not complete, the exercise number has an \boldsymbol{H} next to it. $A *$ next to an exercise number signals that the exercise is more challenging than usual. Be careful not to get into the habit of turning to the solutions too quickly. Make every effort to work exercises on your own before checking your answers. See the Preface for additional sources of assistance and further study.

In each of $1-6$, fill in the blanks using a variable or variables to rewrite the given statement.

1. Is there a real number whose square is -1 ?
a. Is there a real number x such that ?
b. Does there exist \qquad such that $x^{2}=-1$?
2. Is there an integer that has a remainder of 2 when it is divided by 5 and a remainder of 3 when it is divided by 6 ?
a. Is there an integer n such that n has \qquad ?
b. Does there exist \qquad such that if n is divided by 5 the remainder is 2 and if \qquad ?
Note: There are integers with this property. Can you think of one?
3. Given any two real numbers, there is a real number in between.
a. Given any two real numbers a and b, there is a real number c such that c is \qquad .
b. For any two \qquad , such that $a<c<b$.
4. Given any real number, there is a real number that is greater.
a. Given any real number r, there is \qquad s such that s is
b. For any \qquad such that $s>r$.
5. The reciprocal of any positive real number is positive.
a. Given any positive real number r, the reciprocal of \qquad .
b. For any real number r, if r is \qquad then \qquad -
c. If a real number r \qquad , then \qquad -.
6. The cube root of any negative real number is negative.
a. Given any negative real number s, the cube root of \qquad .
b. For any real number s, if s is \qquad then \qquad -.
c. If a real number s \qquad , then \qquad .
7. Rewrite the following statements less formally, without using variables. Determine, as best as you can, whether the statements are true or false.
a. There are real numbers u and v with the property that $u+v<u-v$.
b. There is a real number x such that $x^{2}<x$.
c. For all positive integers $n, n^{2} \geq n$.
d. For all real numbers a and $b,|a+b| \leq|a|+|b|$.

In each of 8-13, fill in the blanks to rewrite the given statement.
8. For all objects J, if J is a square then J has four sides.
a. All squares \qquad .
b. Every square \qquad .
c. If an object is a square, then it \qquad .
d. If J \qquad , then J \qquad -
e. For all squares J, \qquad -.
9. For all equations E, if E is quadratic then E has at most two real solutions.
a. All quadratic equations \qquad -
b. Every quadratic equation \qquad .
c. If an equation is quadratic, then it \qquad .
d. If E \qquad , then E \qquad .
e. For all quadratic equations E, \qquad .
10. Every nonzero real number has a reciprocal.
a. All nonzero real numbers \qquad
b. For all nonzero real numbers r, there is \qquad for r.
c. For all nonzero real numbers r, there is a real number s such that \qquad .
11. Every positive number has a positive square root.
a. All positive numbers \qquad -.
b. For any positive number e, there is \qquad for e.
c. For all positive numbers e, there is a positive number r such that \qquad .
12. There is a real number whose product with every number leaves the number unchanged.
a. Some \qquad has the property that its \qquad .
b. There is a real number r such that the product of r \qquad \rightarrow
c. There is a real number r with the property that for every real number s, \qquad -
13. There is a real number whose product with every real number equals zero.
a. Some \qquad has the property that its \qquad .
b. There is a real number a such that the product of a \qquad .
c. There is a real number a with the property that for every real number b, \qquad .

