Exercise Set 4.5

Compute $\lfloor x\rfloor$ and $\lceil x\rceil$ for each of the values of x in $1-4$.

1. 37.999
2. $17 / 4$
3. -14.00001
4. $-32 / 5$
5. Use the floor notation to express 259 div 11 and $259 \bmod 11$.
6. If k is an integer, what is $\lceil k\rceil$? Why?
7. If k is an integer, what is $\left\lceil k+\frac{1}{2}\right\rceil$? Why?
8. Seven pounds of raw material are needed to manufacture each unit of a certain product. Express the number of units that can be produced from n pounds of raw material using either the floor or the ceiling notation. Which notation is more appropriate?
9. Boxes, each capable of holding 36 units, are used to ship a product from the manufacturer to a wholesaler. Express the number of boxes that would be required to ship n units of the product using either the floor or the ceiling notation. Which notation is more appropriate?
10. If $0=$ Sunday, $1=$ Monday, $2=$ Tuesday, $\ldots, 6=$ Saturday, then January 1 of year n occurs on the day of the week given by the following formula:

$$
\left(n+\left\lfloor\frac{n-1}{4}\right\rfloor-\left\lfloor\frac{n-1}{100}\right\rfloor+\left\lfloor\frac{n-1}{400}\right\rfloor\right) \bmod 7
$$

a. Use this formula to find January 1 of
i. 2050
ii. 2100
iii. the year of your birth.

H b. Interpret the different components of this formula.
11. State a necessary and sufficient condition for the floor of a real number to equal that number.
12. Prove that if n is any even integer, then $\lfloor n / 2\rfloor=n / 2$.
13. Suppose n and d are integers and $d \neq 0$. Prove each of the following.
a. If $d \mid n$, then $n=\lfloor n / d\rfloor \cdot d$.
b. If $n=\lfloor n / d\rfloor \cdot d$, then $d \mid n$.
c. Use the floor notation to state a necessary and sufficient condition for an integer n to be divisible by an integer d.

Some of the statements in 14-22 are true and some are false. Prove each true statement and find a counterexample for each false statement, but do not use Theorem 4.5.1. in your proofs.
14. For all real numbers x and $y,\lfloor x-y\rfloor=\lfloor x\rfloor-\lfloor y\rfloor$.
15. For all real numbers $x,\lfloor x-1\rfloor=\lfloor x\rfloor-1$.
16. For all real numbers $x,\left\lfloor x^{2}\right\rfloor=\lfloor x\rfloor^{2}$.

H 17. For all integers n,

$$
\lfloor n / 3\rfloor=\left\{\begin{array}{ll}
n / 3 & \text { if } n \bmod 3=0 \\
(n-1) / 3 & \text { if } n \bmod 3=1 \\
(n-2) / 3 & \text { if } n \bmod 3=2
\end{array} .\right.
$$

H 18. For all real numbers x and $y,\lceil x+y\rceil=\lceil x\rceil+\lceil y\rceil$.
H 19. For all real numbers $x,\lceil x-1\rceil=\lceil x\rceil-1$.
20. For all real numbers x and $y,\lceil x y\rceil=\lceil x\rceil \cdot\lceil y\rceil$.
21. For all odd integers $n,\lceil n / 2\rceil=(n+1) / 2$.
22. For all real numbers x and $y,\lceil x y\rceil=\lceil x\rceil \cdot\lfloor y\rfloor$.

Prove each of the statements in 23-29.
23. For any real number x, if x is not an integer, then $\lfloor x\rfloor+\lfloor-x\rfloor=-1$.
24. For any integer m and any real number x, if x is not an integer, then $\lfloor x\rfloor+\lfloor m-x\rfloor=m-1$.

H 25. For all real numbers $x,\lfloor\lfloor x / 2\rfloor / 2\rfloor=\lfloor x / 4\rfloor$.
26. For all real numbers x, if $x-\lfloor x\rfloor<1 / 2$ then $\lfloor 2 x\rfloor=2\lfloor x\rfloor$.
27. For all real numbers x, if $x-\lfloor x\rfloor \geq 1 / 2$ then $\lfloor 2 x\rfloor=2\lfloor x\rfloor+1$.
28. For any odd integer n,

$$
\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left(\frac{n-1}{2}\right)\left(\frac{n+1}{2}\right)
$$

29. For any odd integer n,

$$
\left\lceil\frac{n^{2}}{4}\right\rceil=\frac{n^{2}+3}{4}
$$

30. Find the mistake in the following "proof" that $\lfloor n / 2\rfloor=$ $(n-1) / 2$ if n is an odd integer.
"Proof: Suppose n is any odd integer. Then $n=2 k+1$ for some integer k. Consequently,

$$
\left\lfloor\frac{2 k+1}{2}\right\rfloor=\frac{(2 k+1)-1}{2}=\frac{2 k}{2}=k
$$

But $n=2 k+1$. Solving for k gives $k=(n-1) / 2$. Hence, by substitution, $\lfloor n / 2\rfloor=(n-1) / 2$."

