Exercise Set 4.7

- 1. A calculator display shows that $\sqrt{2} = 1.414213562$, and $1.414213562 = \frac{1414213562}{100000000}$. This suggests that $\sqrt{2}$ is a rational number, which contradicts Theorem 4.7.1. Explain the discrepancy.
- 2. Example 4.2.1(h) illustrates a technique for showing that any repeating decimal number is rational. A calculator display shows the result of a certain calculation as 40.72727272727. Can you be sure that the result of the calculation is a rational number? Explain.

Determine which statements in 3-13 are true and which are false. Prove those that are true and disprove those that are false.

- 3. $6 7\sqrt{2}$ is irrational. 4. $3\sqrt{2} 7$ is irrational.
- 5. $\sqrt{4}$ is irrational. 6. $\sqrt{2}/6$ is rational.
- 7. The sum of any two irrational numbers is irrational.
- 8. The difference of any two irrational numbers is irrational.
- 9. The positive square root of a positive irrational number is irrational.
- 10. If r is any rational number and s is any irrational number, then r/s is irrational.

- 11. The sum of any two positive irrational numbers is irrational.
- 12. The product of any two irrational numbers is irrational.
- H 13. If an integer greater than 1 is a perfect square, then its cube root is irrational.
 - 14. Consider the following sentence: If x is rational then \sqrt{x} is irrational. Is this sentence always true, sometimes true and sometimes false, or always false? Justify your answer.
 - 15. a. Prove that for all integers a, if a³ is even then a is even.
 b. Prove that ³√2 is irrational.
 - 16. a. Use proof by contradiction to show that for any integer *n*, it is impossible for *n* to equal both $3q_1 + r_1$ and $3q_2 + r_2$, where q_1, q_2, r_1 , and r_2 , are integers, $0 \le r_1 < 3, 0 \le r_2 < 3$, and $r_1 \ne r_2$.
 - b. Use proof by contradiction, the quotient-remainder theorem, division into cases, and the result of part (a) to prove that for all integers n, if n^2 is divisible by 3 then n is divisible by 3.
 - c. Prove that $\sqrt{3}$ is irrational.
 - 17. Give an example to show that if d is not prime and n^2 is divisible by d, then n need not be divisible by d.

H 18. The quotient-remainder theorem says not only that there exist quotients and remainders but also that the quotient and remainder of a division are unique. Prove the uniqueness. That is, prove that if a and d are integers with d > 0 and if q_1, r_1, q_2 , and r_2 are integers such that

$$a = dq_1 + r_1$$
 where $0 \le r_1 < d$

and

 $a = dq_2 + r_2 \quad \text{where } 0 \le r_2 < d,$

then

$$q_1 = q_2$$
 and $r_1 = r_2$.

- **H** 19. Prove that $\sqrt{5}$ is irrational.
- **H** 20. Prove that for any integer a, $9 \not\mid (a^2 3)$.
 - **21.** An alternative proof of the irrationality of $\sqrt{2}$ counts the number of 2's on the two sides of the equation $2n^2 = m^2$ and uses the unique factorization of integers theorem to deduce a contradiction. Write a proof that uses this approach.
 - 22. Use the proof technique illustrated in exercise 21 to prove that if *n* is any integer that is not a perfect square, then \sqrt{n} is irrational.
- **H** 23. Prove that $\sqrt{2} + \sqrt{3}$ is irrational.
- ★ 24. Prove that log₅(2) is irrational. (*Hint*: Use the unique factorisation of integers theorem.)
- **H 25.** Let $N = 2 \cdot 3 \cdot 5 \cdot 7 + 1$. What remainder is obtained when N is divided by 2? 3? 5? 7? Is N prime? Justify your answer.
- **H 26.** Suppose a is an integer and p is a prime number such that $p \mid a$ and $p \mid (a + 3)$. What can you deduce about p? Why?
 - 27. Let p_1, p_2, p_3, \ldots be a list of all prime numbers in ascending order. Here is a table of the first six:

<i>p</i> ₁	<i>p</i> ₂	p ₃	<i>p</i> ₄	p 5	<i>p</i> ₆
2	3	5	7	11	13

- *H* a. For each i = 1, 2, 3, 4, 5, 6, let $N_i = p_1 p_2 \cdots p_i + 1$. Calculate N_1, N_2, N_3, N_4, N_5 , and N_6 .
 - b. For each i = 1, 2, 3, 4, 5, 6, find the smallest prime number q_i such that q_i divides N_i . (*Hint*: Use the test for primality from exercise 31 in Section 4.6 to determine your answers.)

For exercises 28 and 29, use the fact that for all integers n,

$$n! = n(n-1) \dots 3 \cdot 2 \cdot 1$$

28. An alternative proof of the infinitude of the prime numbers begins as follows:

Proof: Suppose there are only finitely many prime numbers. Then one is the largest. Call it p. Let M = p! + 1. We will show that there is a prime number q such that q > p. Complete this proof.

- *H* *** 29.** Prove that for all integers *n*, if n > 2 then there is a prime number *p* such that n .
- **H * 30.** Prove that if $p_1, p_2, ..., and <math>p_n$ are distinct prime numbers with $p_1 = 2$ and n > 1, then $p_1 p_2 \cdots p_n + 1$ can be written in the form 4k + 3 for some integer k.
 - *H* 31. a. Fermat's last theorem says that for all integers n > 2, the equation $x^n + y^n = z^n$ has no positive integer solution (solution for which x, y, and z are positive integers). Prove the following: If for all prime numbers p > 2, $x^p + y^p = z^p$ has no positive integer solution, then for any integer n > 2 that is not a power of 2, $x^n + y^n = z^n$ has no positive integer solution.
 - b. Fermat proved that there are no integers x, y, and z such that $x^4 + y^4 = z^4$. Use this result to remove the restriction in part (a) that n not be a power of 2. That is, prove that if n is a power of 2 and n > 4, then $x^n + y^n = z^n$ has no positive integer solution.

For exercises 32–35 note that to show there is a unique object with a certain property, show that (1) there is an object with the property and (2) if objects A and B have the property, then A = B.

- 32. Prove that there exists a unique prime number of the form $n^2 1$, where n is an integer that is greater than or equal to 2.
- 33. Prove that there exists a unique prime number of the form $n^2 + 2n 3$, where *n* is a positive integer.
- **34.** Prove that there is at most one real number *a* with the property that a + r = r for all real numbers *r*. (Such a number is called an *additive identity*.)
- 35. Prove that there is at most one real number *b* with the property that br = r for all real numbers *r*. (Such a number is called a *multiplicative identity*.)