Exercise Set 4.7

1. A calculator display shows that $\sqrt{2}=1.414213562$, and $1.414213562=\frac{1414213562}{1000000000}$. This suggests that $\sqrt{2}$ is a rational number, which contradicts Theorem 4.7.1. Explain the discrepancy.
2. Example 4.2.1(h) illustrates a technique for showing that any repeating decimal number is rational. A calculator display shows the result of a certain calculation as 40.72727272727 . Can you be sure that the result of the calculation is a rational number? Explain.
Determine which statements in 3-13 are true and which are false. Prove those that are true and disprove those that are false.
3. $6-7 \sqrt{2}$ is irrational.
4. $3 \sqrt{2}-7$ is irrational.
5. $\sqrt{4}$ is irrational.
6. $\sqrt{2} / 6$ is rational.
7. The sum of any two irrational numbers is irrational.
8. The difference of any two irrational numbers is irrational.
9. The positive square root of a positive irrational number is irrational.
10. If r is any rational number and s is any irrational number, then r / s is irrational.
11. The sum of any two positive irrational numbers is irrational.
12. The product of any two irrational numbers is irrational.

H 13. If an integer greater than 1 is a perfect square, then its cube root is irrational.
14. Consider the following sentence: If x is rational then \sqrt{x} is irrational. Is this sentence always true, sometimes true and sometimes false, or always false? Justify your answer.
15. a. Prove that for all integers a, if a^{3} is even then a is even.
b. Prove that $\sqrt[3]{2}$ is irrational.
16. a. Use proof by contradiction to show that for any integer n, it is impossible for n to equal both $3 q_{1}+r_{1}$ and $3 q_{2}+r_{2}$, where q_{1}, q_{2}, r_{1}, and r_{2}, are integers, $0 \leq r_{1}<$ $3,0 \leq r_{2}<3$, and $r_{1} \neq r_{2}$.
b. Use proof by contradiction, the quotient-remainder theorem, division into cases, and the result of part (a) to prove that for all integers n, if n^{2} is divisible by 3 then n is divisible by 3 .
c. Prove that $\sqrt{3}$ is irrational.
17. Give an example to show that if d is not prime and n^{2} is divisible by d, then n need not be divisible by d.

H 18. The quotient-remainder theorem says not only that there exist quotients and remainders but also that the quotient and remainder of a division are unique. Prove the uniqueness. That is, prove that if a and d are integers with $d>0$ and if q_{1}, r_{1}, q_{2}, and r_{2} are integers such that

$$
a=d q_{1}+r_{1} \quad \text { where } 0 \leq r_{1}<d
$$

and

$$
a=d q_{2}+r_{2} \quad \text { where } 0 \leq r_{2}<d
$$

then

$$
q_{1}=q_{2} \quad \text { and } \quad r_{1}=r_{2}
$$

H 19. Prove that $\sqrt{5}$ is irrational.
H 20. Prove that for any integer $a, 9 \times\left(a^{2}-3\right)$.
21. An alternative proof of the irrationality of $\sqrt{2}$ counts the number of 2 's on the two sides of the equation $2 n^{2}=m^{2}$ and uses the unique factorization of integers theorem to deduce a contradiction. Write a proof that uses this approach.
22. Use the proof technique illustrated in exercise 21 to prove that if n is any integer that is not a perfect square, then \sqrt{n} is irrational.

H 23. Prove that $\sqrt{2}+\sqrt{3}$ is irrational.
24. Prove that $\log _{5}(2)$ is irrational. (Hint: Use the unique factorisation of integers theorem.)

H 25. Let $N=2 \cdot 3 \cdot 5 \cdot 7+1$. What remainder is obtained when N is divided by 2? 3? 5? 7? Is N prime? Justify your answer.

H 26. Suppose a is an integer and p is a prime number such that $p \mid a$ and $p \mid(a+3)$. What can you deduce about p ? Why?
27. Let $p_{1}, p_{2}, p_{3}, \ldots$ be a list of all prime numbers in ascending order. Here is a table of the first six:

p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}
2	3	5	7	11	13

H a. For each $i=1,2,3,4,5,6$, let $N_{i}=p_{1} p_{2} \cdots p_{i}+1$. Calculate $N_{1}, N_{2}, N_{3}, N_{4}, N_{5}$, and N_{6}.
b. For each $i=1,2,3,4,5,6$, find the smallest prime number q_{i} such that q_{i} divides N_{i}. (Hint: Use the test for primality from exercise 31 in Section 4.6 to determine your answers.)

For exercises 28 and 29, use the fact that for all integers n,

$$
n!=n(n-1) \ldots 3 \cdot 2 \cdot 1
$$

28. An alternative proof of the infinitude of the prime numbers begins as follows:

Proof: Suppose there are only finitely many prime numbers. Then one is the largest. Call it p. Let $M=p!+1$. We will show that there is a prime number q such that $q>p$. Complete this proof.
$H * 29$. Prove that for all integers n, if $n>2$ then there is a prime number p such that $n<p<n$!.
$\boldsymbol{H} * 30$. Prove that if p_{1}, p_{2}, \ldots, and p_{n} are distinct prime numbers with $p_{1}=2$ and $n>1$, then $p_{1} p_{2} \cdots p_{n}+1$ can be written in the form $4 k+3$ for some integer k.
H 31. a. Fermat's last theorem says that for all integers $n>2$, the equation $x^{n}+y^{n}=z^{n}$ has no positive integer solution (solution for which x, y, and z are positive integers). Prove the following: If for all prime numbers $p>2$, $x^{p}+y^{p}=z^{p}$ has no positive integer solution, then for any integer $n>2$ that is not a power of $2, x^{n}+y^{n}=z^{n}$ has no positive integer solution.
b. Fermat proved that there are no integers x, y, and z such that $x^{4}+y^{4}=z^{4}$. Use this result to remove the restriction in part (a) that n not be a power of 2 . That is, prove that if n is a power of 2 and $n>4$, then $x^{n}+y^{n}=z^{n}$ has no positive integer solution.

For exercises 32-35 note that to show there is a unique object with a certain property, show that (1) there is an object with the property and (2) if objects A and B have the property, then $A=B$.
32. Prove that there exists a unique prime number of the form $n^{2}-1$, where n is an integer that is greater than or equal to 2 .
33. Prove that there exists a unique prime number of the form $n^{2}+2 n-3$, where n is a positive integer.
34. Prove that there is at most one real number a with the property that $a+r=r$ for all real numbers r. (Such a number is called an additive identity.)
35. Prove that there is at most one real number b with the property that $b r=r$ for all real numbers r. (Such a number is called a multiplicative identity.)

