Exercise Set 4.8

Find the value of z when each of the algorithm segments in 1 and 2 is executed.

 1. i := 2 2. i := 3

 if $(i > 3 \text{ or } i \le 0)$ if $(i \le 3 \text{ or } i > 6)$

 then z := 1 then z := 2

 else z := 0 else z := 0

3. Consider the following algorithm segment:

if
$$x \cdot y > 0$$
 then do $y := 3 \cdot x$
 $x := x + 1$ end do
 $z := x \cdot y$

Find the value of z if prior to execution x and y have the values given below.

a. x = 2, y = 3 b. x = 1, y = 1

Find the values of a and e after execution of the loops in 4 and 5:

4.
$$a := 2$$

for $i := 1$ to 2
 $a := \frac{a}{2} + \frac{1}{a}$
next i
5. $e := 0, f := 2$
for $j := 1$ to 4
 $f := f \cdot j$
 $e := e + \frac{1}{f}$

next j

Make a trace table to trace the action of Algorithm 4.8.1 for the input variables given in 6 and 7.

6.
$$a = 26, d = 7$$
 7. $a = 59, d = 13$

The following algorithm segment makes change; given an amount of money A between 1¢ and 99¢, it determines a breakdown of A into quarters (q), dimes (d), nickels (n), and pennies (p).

$$q := A \operatorname{div} 25$$

$$A := A \operatorname{mod} 25$$

$$d := A \operatorname{div} 10$$

$$A := A \operatorname{mod} 10$$

$$n := A \operatorname{div} 5$$

$$p := A \operatorname{mod} 5$$

a. Trace this algorithm segment for A = 69.

b. Trace this algorithm segment for A = 87.

Find the greatest common divisor of each of the pairs of integers in 9–12. (Use any method you wish.)

9. 27 and 72	10. 5 and 9
--------------	-------------

11. 7 and 21 12. 48 and 54

Use the Euclidean algorithm to hand-calculate the greatest common divisors of each of the pairs of integers in 13–16.

13. 1,188 and 385	14. 509 and 1,177
15. 832 and 10,933	16. 4,131 and 2,431

Make a trace table to trace the action of Algorithm 4.8.2 for the input variables given in 17 and 18.

- **17.** 1,001 and 871 18. 5,859 and 1,232
- **H** 19. Prove that for all positive integers a and b, a | b if, and only if, gcd(a, b) = a. (Note that to prove "A if, and only if, B," you need to prove "if A then B" and "if B then A.")
 - 20. a. Prove that if a and b are integers, not both zero, and $d = \gcd(a, b)$, then a/d and b/d are integers with no common divisor that is greater than one.
 - b. Write an algorithm that accepts the numerator and denominator of a fraction as input and produces as output the numerator and denominator of that fraction written in lowest terms. (The algorithm may call upon the Euclidean algorithm as needed.)
 - 21. Complete the proof of Lemma 4.8.2 by proving the following: If a and b are any integers with $b \neq 0$ and q and r are any integers such that

$$a = bq + r$$
.

then $gcd(b, r) \leq gcd(a, b)$.

H 22. **a.** Prove: If a and d are positive integers and q and r are integers such that a = dq + r and 0 < r < d, then

$$-a = d(-(q+1)) + (d-r)$$

 $0 < d-r < d.$

and

- b. Indicate how to modify Algorithm 4.8.1 to allow for the input *a* to be negative.
- 23. a. Prove that if a, d, q, and r are integers such that a = dq + r and $0 \le r < d$, then

$$q = \lfloor a/d \rfloor$$
 and $r = a - \lfloor a/d \rfloor \cdot d$.

b. In a computer language with a built-in-floor function, *div* and *mod* can be calculated as follows:

$$a \operatorname{div} d = \lfloor a/d \rfloor$$
 and $a \operatorname{mod} d = a - \lfloor a/d \rfloor \cdot d$.

Rewrite the steps of Algorithm 4.8.2 for a computer language with a built-in floor function but without *div* and *mod*.

24. An alternative to the Euclidean algorithm uses subtraction rather than division to compute greatest common divisors. (After all, division is repeated subtraction.) It is based on the following lemma:

Lemma 4.8.3

If
$$a \ge b > 0$$
, then $gcd(a, b) = gcd(b, a - b)$.

Algorithm 4.8.3 Computing gcd's by Subtraction

[Given two positive integers A and B, variables a and b are set equal to A and B. Then a repetitive process begins. If $a \neq 0$, and $b \neq 0$, then the larger of a and b is set equal to a - b (if $a \ge b$) or to b - a (if a < b), and the smaller of a and b is left unchanged. This process is repeated over and over until eventually a or b becomes 0. By Lemma 4.8.3, after each repetition of the process,

$$gcd(A, B) = gcd(a, b).$$

After the last repetition,

gcd(A, B) = gcd(a, 0) or gcd(A, B) = gcd(0, b)

depending on whether a or b is nonzero. But by Lemma 4.8.1,

$$gcd(a, 0) = a$$
 and $gcd(0, b) = b$.

Hence, after the last repetition,

 $gcd(A, B) = a \text{ if } a \neq 0 \text{ or } gcd(A, B) = b \text{ if } b \neq 0.$

Input: A, B [positive integers]

Algorithm Body:

a := A, b := B

while $(a \neq 0 \text{ and } b \neq 0)$

```
if a \ge b then a := a - b
```

```
else b := b - a
```

end while

if a = 0 then gcd := belse gcd := a

```
[After execution of the if-then-else statement, gcd = gcd(A, B).]
```

Output: gcd [a positive integer]

- a. Prove Lemma 4.8.3.
- **b.** Trace the execution of Algorithm 4.8.3 for A = 630 and B = 336.
- c. Trace the execution of Algorithm 4.8.3 for A = 768 and B = 348.

Exercises 25-29 refer to the following definition.

Definition: The least common multiple of two nonzero integers a and b, denoted lcm(a, b), is the positive integer c such that

- a. $a \mid c \text{ and } b \mid c$
- b. for all positive integers m, if $a \mid m$ and $b \mid m$, then $c \leq m$.
- 25. Find
 a. lcm(12, 18)
 b. lcm(2² ⋅ 3 ⋅ 5, 2³ ⋅ 3²)
 c. lcm(2800, 6125)
- **26.** Prove that for all positive integers a and b, gcd(a, b) = lcm(a, b) if, and only if, a = b.
- 27. Prove that for all positive integers a and b, $a \mid b$ if, and only if, lcm(a, b) = b.
- 28. Prove that for all integers a and b, gcd(a, b) | lcm(a, b).
- **H 29.** Prove that for all positive integers a and b, $gcd(a, b) \cdot lcm(a, b) = ab$.