Exercise Set 5.2

1. Use mathematical induction (and the proof of Proposition 5.2 .1 as a model) to show that any amount of money of at least $14 \not \subset$ can be made up using $3 \not \subset$ and $8 ¢$ coins.
2. Use mathematical induction to show that any postage of at least 124 can be obtained using 3φ and 7φ stamps.
3. For each positive integer n, let $P(n)$ be the formula

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

a. Write $P(1)$. Is $P(1)$ true ?
b. Write $P(k)$.
c. Write $P(k+1)$.
d. In a proof by mathematical induction that the formula holds for all integers $n \geq 1$, what must be shown in the inductive step?
4. For each integer n with $n \geq 2$, let $P(n)$ be the formula

$$
\sum_{i=1}^{n-1} i(i+1)=\frac{n(n-1)(n+1)}{3}
$$

a. Write $P(2)$. Is $P(2)$ true?
b. Write $P(k)$.
c. Write $P(k+1)$.
d. In a proof by mathematical induction that the formula holds for all integers $n \geq 2$, what must be shown in the inductive step?
5. Fill in the missing pieces in the following proof that

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

for all integers $n \geq 1$.

Proof: Let the property $P(n)$ be the equation

$$
1+3+5+\cdots+(2 n-1)=n^{2} . \leftarrow P(n)
$$

Show that $\mathbf{P}(1)$ is true: To establish $P(1)$, we must show that when 1 is substituted in place of n, the left-hand side equals the right-hand side. But when $n=1$, the left-hand side is the sum of all the odd integers from 1 to $2 \cdot 1-1$, which is the sum of the odd integers from 1 to 1 , which is just 1 . The right-hand side is $\xrightarrow{(a)}$, which also equals 1 . So $P(1)$ is true.
Show that for all integers $k \geq 1$, if $P(k)$ is true then $\boldsymbol{P}(k+1)$ is true: Let k be any integer with $k \geq 1$.
[Suppose $P(k)$ is true. That is:]
Suppose $1+3+5+\cdots+(2 k-1)=($ (b).$\leftarrow P(k)$
[This is the inductive hypothesis.]
[We must show that $P(k+1)$ is true. That is:]
We must show that

$$
\underline{(\mathrm{c})}=\underline{(\mathrm{d})} . \quad \leftarrow P(k+1)
$$

But the left-hand side of $P(k+1)$ is

$$
\begin{aligned}
1+3+5+\cdots+ & (2(k+1)-1) \\
= & 1+3+5+\cdots+(2 k+1) \quad \text { by algebra } \\
= & {[1+3+5+\cdots+(2 k-1)]+(2 k+1) } \\
& \text { the next-to-last term is } 2 k-1 \text { because }(\mathrm{e}) \\
= & k^{2}+(2 k+1) \\
= & (k+1)^{2} \quad \text { by } \frac{(\mathrm{f})}{} \\
= & \text { by algebra }
\end{aligned}
$$

which is the right-hand side of $P(k+1)$ [as was to be shown.]
[Since we have proved the basis step and the inductive step, we conclude that the given statement is true.]
The previous proof was annotated to help make its logical flow more obvious. In standard mathematical writing, such annotation is omitted.
Prove each statement in 6-9 using mathematical induction. Do not derive them from Theorem 5.2.2 or Theorem 5.2.3.
6. For all integers $n \geq 1,2+4+6+\cdots+2 n=n^{2}+n$.
7. For all integers $n \geq 1$,

$$
1+6+11+16+\cdots+(5 n-4)=\frac{n(5 n-3)}{2}
$$

8. For all integers $n \geq 0,1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1$.
9. For all integers $n \geq 3$,

$$
4^{3}+4^{4}+4^{5}+\cdots+4^{n}=\frac{4\left(4^{n}-16\right)}{3}
$$

Prove each of the statements in $10-17$ by mathematical induction.
10. $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$, for all integers $n \geq 1$.
11. $1^{3}+2^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$, for all integers $n \geq 1$.
12. $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}$, for all integers $n \geq 1$.
13. $\sum_{i=1}^{n-1} i(i+1)=\frac{n(n-1)(n+1)}{3}$, for all integers $n \geq 2$.
14. $\sum_{i=1}^{n+1} i \cdot 2^{i}=n \cdot 2^{n+2}+2$, for all integers $n \geq 0$.

H 15. $\sum_{i=1}^{n} i(i!)=(n+1)!-1$, for all integers $n \geq 1$.
16. $\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right) \cdots\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}$, for all integers $n \geq 2$.
17. $\prod_{i=0}^{n}\left(\frac{1}{2 i+1} \cdot \frac{1}{2 i+2}\right)=\frac{1}{(2 n+2)!}$, for all integers $n \geq 0$.
$4 *$ 18. If x is a real number not divisible by π, then for all integers $n \geq 1$,

$$
\begin{aligned}
\sin x+\sin 3 x+\sin 5 x+\cdots+\sin (2 n-1) x & \\
& =\frac{1-\cos 2 n x}{2 \sin x}
\end{aligned}
$$

19. (For students who have studied calculus) Use mathematical induction, the product rule from calculus, and the facts that $\frac{d(x)}{d x}=1$ and that $x^{k+1}=x \cdot x^{k}$ to prove that for all integers $n \geq 1, \frac{d\left(x^{n}\right)}{d x}=n x^{n-1}$.

Use the formula for the sum of the first n integers and/or the formula for the sum of a geometric sequence to evaluate the sums in 20-29 or to write them in closed form.
20. $4+8+12+16+\cdots+200$
21. $5+10+15+20+\cdots+300$
22. $3+4+5+6+\cdots+1000$
23. $7+8+9+10+\cdots+600$
24. $1+2+3+\cdots+(k-1)$, where k is an integer and $k \geq 2$.
25. a. $1+2+2^{2}+\cdots+2^{25}$
b. $2+2^{2}+2^{3}+\cdots+2^{26}$
26. $3+3^{2}+3^{3}+\cdots+3^{n}$, where n is an integer with $n \geq 1$
27. $5^{3}+5^{4}+5^{5}+\cdots+5^{k}$, where k is any integer with $k \geq 3$.
28. $1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n}}$, where n is a positive integer
29. $1-2+2^{2}-2^{3}+\cdots+(-1)^{n} 2^{n}$, where n is a positive integer

H 30. Find a formula in n, a, m, and d for the sum $(a+m d)+$ $(a+(m+1) d)+(a+(m+2) d)+\cdots+(a+(m+n) d)$, where m and n are integers, $n \geq 0$, and a and d are real numbers. Justify your answer.
31. Find a formula in a, r, m, and n for the sum

$$
a r^{m}+a r^{m+1}+a r^{m+2}+\cdots+a r^{m+n}
$$

where m and n are integers, $n \geq 0$, and a and r are real numbers. Justify your answer.
32. You have two parents, four grandparents, eight greatgrandparents, and so forth.
a. If all your ancestors were distinct, what would be the total number of your ancestors for the past 40 generations (counting your parents' generation as number one)? (Hint: Use the formula for the sum of a geometric sequence.)
b. Assuming that each generation represents 25 years, how long is 40 generations?
c. The total number of people who have ever lived is approximately 10 billion, which equals 10^{10} people. Compare this fact with the answer to part (a). What do you deduce?

Find the mistakes in the proof fragments in 33-35.
H 33. Theorem: For any integer $n \geq 1$,

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

"Proof (by mathematical induction): Certainly the theorem is true for $n=1$ because $1^{2}=1$ and
$\frac{1(1+1)(2 \cdot 1+1)}{6}=1$. So the basis step is true.
For the inductive step, suppose that for some integer $k \geq 1$, $k^{2}=\frac{k(k+1)(2 k+1)}{6}$. We must show that
$(k+1)^{2}=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} .$,
H 34. Theorem: For any integer $n \geq 0$,

$$
1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1
$$

"Proof (by mathematical induction): Let the property $P(n)$ be $1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1$.
Show that $P(0)$ is true:
The left-hand side of $P(0)$ is $1+2+2^{2}+\cdots+2^{0}=1$ and the right-hand side is $2^{0+1}-1=2-1=1$ also. So $P(0)$ is true."

H 35. Theorem: For any integer $n \geq 1$,

$$
\sum_{i=1}^{n} i(i!)=(n+1)!-1
$$

"Proof (by mathematical induction): Let the property $P(n)$ be $\sum_{i=1}^{n} i(i!)=(n+1)!-1$.
Show that $P(1)$ is true: When $n=1$

$$
\begin{aligned}
\sum_{i=1}^{1} i(i!) & =(1+1)!-1 \\
1(1!) & =2!-1 \\
1 & =1
\end{aligned}
$$

$$
\text { So } \quad 1(1!)=2!-1
$$

and

Thus $P(1)$ is true."

* 36. Use Theorem 5.2 .2 to prove that if m and n are any positive integers and m is odd, then $\sum_{k=0}^{m-1}(n+k)$ is divisible by m. Does the conclusion hold if m is even? Justify your answer.
$\boldsymbol{H} * 37$. Use Theorem 5.2.2 and the result of exercise 10 to prove that if p is any prime number with $p \geq 5$, then the sum of squares of any p consecutive integers is divisible by p.

