
Exercise Set 5.4 
1.	 Suppose G" Gz, a3, ... is a sequence defined as follows: 

al = I, az = 3, 

Gk = ak-Z + 2ak- 1 for all integers k 2: 3. 

Prove that an is odd for all integers n 2: 1. 

2. Suppose b l , bz, b3 , ••• is a sequence defined as follows: 

bl = 4, bz = 12 

bk = bk- Z + bk- I for all integers k 2: 3. 

Prove that bn is divisible by 4 for all integers n 2: I. 

3.	 Suppose that Co, CI, Cz, ... is a sequence defined as follows: 

Co = 2, CI = 2, Cz = 6, 

Ck = 3Ck-3 for all integers k 2: 3. 

Prove that Cn is even for all integers n 2: o. 
4. Suppose thatd l , dz, d3 , .•. is a sequence defined as follows: 

9 10 
dl = 10' dz = II'
 
dk = dk- I • dk- Z for all integers k 2: 3.
 

Prove that 0 < d" ~ I for all integers n 2: o.
 
5. Suppose that eo, el, ez, ... is a sequence defined as follows: 

eo = 12, e, = 29 

ek = 5ek-1 - 6ek-Z for all integers k 2: 2. 

Prove tliat e" = 5· 3n + 7·2" for all integers n 2: o. 
6. Suppose that	 10, II, /Z, ... is a sequence defined as fol­

lows: 

10=5, II = 16 

Ik = 7/k-1 - 10Ik-Z for all integers k 2: 2. 

Prove that I" = 3·2" + 2·5" for all integers n 2: o. 

7.	 Suppose that g I, gz, g3, . .. is a sequence defined as fol­
lows: 

g, = 3, gz = 5 

gk = 3gk-, - 2gk- Z for all integers k 2: 3. 

Prove that g" = 2n + I for all integers n 2: I. 

8.	 Suppose that ho, hi, hz, ... is a sequence defined as fol­
lows: 

ho = I, hi =2, hz =3,
 

hk = hk- I + hk- Z + hk- 3 for all integers k 2: 3.
 

a.	 Prove that h" ~ 3" for all integers n 2: o. 
b.	 Suppose that s is any real number such that 

s3 2: SZ + s + I. (This implies that s > 1.83.) Prove that 
hn ~ sn for all n 2: 2. 

9.	 Define a sequence ai, az, G3, ... as follows: GI = I, Gz = 3, 
and Gk = Gk-l + Gk-Z for all integers k 2: 3. (This sequence 
is known as the Lucas sequence.) Use strong mathematical 

induction to prove that a" ~ (t) n for all integers n 2: 1. 

H 10. The problem that was used to introduce ordinary mathe­
matical induction in Section 5.2 can also be solved using 
strong mathematical induction. Let P(n) be "any collec­
tion of n coins can be obtained using a combination of 3¢ 
and 5¢ coins." Use strong mathematical induction to prove 
that P(n) is true for all integers n 2: 14. 

11.	 You begin solving a jigsaw puzzle by finding two pieces 
that match and fitting them together. Each subsequent step 
of the solution consists of fitting together two blocks made 
up of one or more pieces that have previously been assem­
bled. Use strong mathematical induction to prove that the 
number of steps required to put together all n pieces of a 
jigsaw puzzle is n - 1. 

H 12. The sides of a circular track contain a sequence of cans of 
gasoline. The total amount in the cans is sufficient to enable 
a certain car to make one complete circuit of the track, and 
it could all fit into the car's gas tank at one time. Use mathe­
matical induction to prove that it is possible to find an initial 
location for placing the car so that it will be able to traverse 
the entire track by using the various amounts of gasoline in 
the cans that it encounters along the way. 

H 13. Use strong mathematical induction to prove the existence 
part of the unique factorization of integers (Theorem 4.3.5): 
Every integer greater than I is either a prime number or a 
product of prime numbers. 

14. Any product of two or more integers is a result of succes­
sive multiplications of two integers at a time. For instance, 
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here are a few of the ways in which al a2a3a4 might be com­
puted: (ala2)(a3a4) or «ala2)a3)a4) or al «a2a3)a4). Use 
strong mathematical induction to prove that any product of 
two or more odd integers is odd. 

15.	 Any sum of two or more integers is a result of successive 
additions of two integers at a time. For instance, here are a 
few of the ways in which al + a2 + a3 + a4 might be com­
puted: (al + a2) + (a3 + a4) or «al + a2) + a3) + a4) or 
a, + «a2 + a3) + a4). Use strong mathematical induction 
to prove that any sum of two or more even integers is even. 

H 16.	 Use strong mathematical induction to prove that for any 
integer n ::': 2, if n is even, then any sum of n odd integers 
is even, and if n is odd, then any sum of n odd integers is 
odd. 

17.	 Compute 41,42,43,44,45,46,47, and 48 . Make a conjec­
ture about the units digit of 4" where n is a positive 
integer. Use strong mathematical induction to prove your 
conjecture. 

18. Compute 9°, 9 1
, 92

, 93
, 94

, and 95
. Make a conjecture about 

the units digit of 9" where n is a positive integer. Use strong 
mathematical induction to prove your conjecture. 

19.	 Find the mistake in the following "proof' that purports 
to show that every nonnegative integer power of every 
nonzero real number is 1. 

"Proof: Let r be any nonzero real number and let the prop­
erty pen) be the equation r" = I.
 
Show that P(O) is true: P(O) is true because rO = I by d~f­

inition of zeroth power.
 
Show that for all integers k ~ 0, if P(i) is true for all inte­

gers i from 0 through k, then P(k + 1) is also true: Let k
 
be any integer with k ::': 0 and suppose that r i = I for all
 
integers i from 0 through k. This is the inductive hypothe­

sis. We must show that r H1 = I. Now
 

rk+1 = r k+k-(k-1)	 becausek + k - (k - I) 

=k+k-k+l=k+1 
rk·rk 

by the laws of exponents
rk - I 

I . I 
by inductive hypothesis 

I 
=1. 

Thus rHI = I [as was to be shown]. 

[Since we have proved the basis step and the inductive step of 

the strong mathematical induction, we conclude that the given 

statement is true.]" 

20.	 Use the well-ordering principle for the integers to prove 
Theorem 4.3.4: Every integer greater than I is divisible by 
a prime number. 

21.	 Use the well-ordering principle for the integers to prove the 
existence part of the unique factorization of integers theo­
rem: Every integer greater than I is either prime or a prod­
uct of prime numbers. 

22.	 a. The Archimedean property for the rational numbers 
states that for all rational numbers r, there is an integer 
n such that n > r. Prove this property. 

b.	 Prove that given any rational number r, the number -r 
is also rational. 

c.	 Use the results of parts (a) and (b) to prove that given 
any rational number r, there is an integer m such that 
m < r. 

H 23. Use the results of exercise 22 and the well-ordering prin­
ciple for the integers to show that given any rational num­
ber r, there is an integer m such that m ::s r < m + I. 

24. Use the well-ordering principle to prove that given any inte­
ger n ::': I, there exists an odd integer m and a nonnegative 
integer k such that n = 2k • m. 

25. Imagine a situation in which eight people, numbered con­
secutively 1-8, are arranged in a circle. Starting from per­
son # I, every second person in the circle is eliminated. 
The elimination process continues until only one person 
remains. In the first round the people numbered 2,4, 6, and 
8 are eliminated, in the second round the people numbered 
3 and 7 are eliminated, and in the third round person #5 is 
eliminated. So after the third round only person # I remains, 
as shown below. 

IniLial Slate After the lSi Round After the 2nd Round After the 3rd Round 

a.	 Given a set of sixteen people arranged in a circle and 
numbered, consecutively 1-16, list the numbers of the 
people who are eliminated in each round if every second 
person is eliminated and the elimination process contin­
ues until only one person remains. Assume that the start­
ing point is person # I. 

b.	 Use mathematical induction to prove that for all integers 
n ::': I, given any set of 2" people arranged in a circle and 
numbered consecutively I through 2", if one starts from 
person #1 and goes repeatedly around the circle succes­
sively eliminating every second person, eventually only 
person #1 will remain. 

c.	 Use the result of part (b) to prove that for any non­
negative integers n and m with 2" ::s 2" + m < 2"+', if 
r = 2" + m, then given any set of r people arranged 
in a circle and numbered consecutively 1 through r, if 
one starts from person #1 and goes repeatedly around 
the circle successively eliminating every second person, 
eventually only person #(2m + I) will remain. 



26.	 Suppose P(n) is a property such that 
I.	 P(O), P(l), P(2) are all true, 
2.	 for all integers k ::: 0, if P (k) is true, then P (3k) is true. 

Must it follow that P(n) is true for all integers n ::: O? If 
yes, explain why; if no, give a counterexample. 

27.	 Prove that if a statement can be proved by strong mathe­
matical induction, then it can be proved by ordinary mathe­
matical induction. To do this, let P(n) be a property that is 
defined for integers n, and suppose the following two state­
ments are true: 
1.	 P(a), P(a + I), P(a + 2), ... , P(b). 
2. For any integer k ::: b, if P(i) is true for all integers i 

from a through k, then P(k + 1) is true. 
The principle of strong mathematical induction would 
allow us to conclude immediately that P(n) is true for all 
integers n ::: a. Can we reach the same conclusion using the 
principle of ordinary mathematical induction? Yes! To see 
this, let Q(n) be the property 

P(j) is true for all integers j with a ~ j ~ n. 
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Then use ordinary mathematical induction to show that 
Q(n) is true for all integers n ::: b. That is, prove 
I.	 Q(b) is true. 
2.	 For any integer k ::: b, if Q(k) is true then Q(k + 1) is 

true. 

28. Give examples to illustrate the proof of Theorem 5.4.1. 

H 29. It is a fact that every integer n ::: I can be written in the 
form 

cr ·3
r + cr _I·3r

-
1 + ... + c2 .32 + c,·3 + Co, 

where Cr = I or 2 and Cj = 0, 1, or 2 for all integers i = 
0, 1,2, ... , r - 1. Sketch a proof of this fact. 

H* 30. Use mathematical induction to prove the existence part of 
the quotient-remainder theorem for integers n ::: o. 

H* 31. Prove that if a statement can be proved by ordinary math­
ematical induction, then it can be proved by the well­
ordering principie. 

H 32. Use the principle of ordinary mathematical induction to 
prove the well-ordering principle for the integers. 


