Exercise Set 5.8

1. Which of the following are second-order linear homogeneous recurrence relations with constant coefficients?
a. $a_{k}=2 a_{k-1}-5 a_{k-2}$
b. $b_{k}=k b_{k-1}+b_{k-2}$
c. $c_{k}=3 c_{k-1} \cdot c_{k-2}^{2}$
d. $d_{k}=3 d_{k-1}+d_{k-2}$
e. $r_{k}=r_{k-1}-r_{k-2}-2$
f. $s_{k}=10 s_{k-2}$
2. Which of the following are second-order linear homogeneous recurrence relations with constant coefficients?
a. $a_{k}=(k-1) a_{k-1}+2 k a_{k-2}$
b. $b_{k}=-b_{k-1}+7 b_{k-2}$
c. $c_{k}=3 c_{k-1}+1$
d. $d_{k}=3 d_{k-1}^{2}+d_{k-2}$
e. $r_{k}=r_{k-1}-6 r_{k-3}$
f. $s_{k}=s_{k-1}+10 s_{k-2}$
3. Let $a_{0}, a_{1}, a_{2}, \ldots$ be the sequence defined by the explicit formula

$$
a_{n}=C \cdot 2^{n}+D \quad \text { for all integers } n \geq 0
$$

where C and D are real numbers.
a. Find C and D so that $a_{0}=1$ and $a_{1}=3$. What is a_{2} in this case?
b. Find C and D so that $a_{0}=0$ and $a_{1}=2$. What is a_{2} in this case?
4. Let $b_{0}, b_{1}, b_{2}, \ldots$ be the sequence defined by the explicit formula

$$
b_{n}=C \cdot 3^{n}+D(-2)^{n} \quad \text { for all integers } n \geq 0
$$

where C and D are real numbers.
a. Find C and D so that $b_{0}=0$ and $b_{1}=5$. What is b_{2} in this case?
b. Find C and D so that $b_{0}=3$ and $b_{1}=4$. What is b_{2} in this case?
5. Let $a_{0}, a_{1}, a_{2}, \ldots$ be the sequence defined by the explicit formula

$$
a_{n}=C \cdot 2^{n}+D \quad \text { for all integers } n \geq 0
$$

where C and D are real numbers. Show that for any choice of C and D,

$$
a_{k}=3 a_{k-1}-2 a_{k-2} \quad \text { for all integers } k \geq 2
$$

6. Let $b_{0}, b_{1}, b_{2}, \ldots$ be the sequence defined by the explicit formula

$$
b_{n}=C \cdot 3^{n}+D(-2)^{n} \quad \text { for all integers } n \geq 0
$$

where C and D are real numbers. Show that for any choice of C and D,

$$
b_{k}=b_{k-1}+6 b_{k-2} \quad \text { for all integers } k \geq 2
$$

7. Solve the system of equations in Example 5.8.4 to obtain

$$
C=\frac{1+\sqrt{5}}{2 \sqrt{5}} \text { and } D=\frac{-(1-\sqrt{5})}{2 \sqrt{5}}
$$

In each of 8-10: (a) suppose a sequence of the form 1.t. $t^{2} . t^{3} \ldots t^{n} \ldots$ where $t \neq 0$, satisfies the given recurrence relation (but not necessarily the initial conditions), and find all possible values of t : (b) suppose a sequence satisfies the given initial conditions as well as the recurrence relation, and find an explicit formula for the sequence.
8. $a_{k}=2 a_{k-1}+3 a_{k-2}$, for all integers $k \geq 2$ $a_{0}=1, a_{1}=2$
9. $b_{k}=7 b_{k-1}-10 b_{k-2}$, for all integers $k \geq 2$ $b_{0}=2, b_{1}=2$
10. $c_{k}=c_{k-1}+6 c_{k-2}$, for all integers $k \geq 2$ $c_{0}=0, c_{1}=3$
In each of 11-16 suppose a sequence satisfies the given recurrence relation and initial conditions. Find an explicit formula for the sequence.
11. $d_{k}=4 d_{k-2}$, for all integers $k \geq 2$ $d_{0}=1, d_{1}=-1$
12. $e_{k}=9 e_{k-2}$, for all integers $k \geq 2$ $e_{0}=0, e_{1}=2$
13. $r_{k}=2 r_{k-1}-r_{k-2}$, for all integers $k \geq 2$
$r_{0}=1, r_{1}=4$
14. $s_{k}=-4 s_{k-1}-4 s_{k-2}$, for all integers $k \geq 2$
$s_{0}=0, s_{1}=-1$
15. $t_{k}=6 t_{k-1}-9 t_{k-2}$, for all integers $k \geq 2$
$t_{0}=1, t_{1}=3$
H 16. $s_{k}=2 s_{k-1}+2 s_{k-2}$, for all integers $k \geq 2$ $s_{0}=1, s_{1}=3$
17. Find an explicit formula for the sequence of exercise 39 in Section 5.6
18. Suppose that the sequences $s_{0}, s_{1}, s_{2}, \ldots$ and $t_{0}, t_{1}, t_{2}, \ldots$ both satisfy the same second-order linear homogeneous recurrence relation with constant coefficients:

$$
\begin{gathered}
s_{k}=5 s_{k-1}-4 s_{k-2} \quad \text { for all integers } k \geq 2 \\
t_{k}=5 t_{k-1}-4 t_{k-2} \quad \text { for all integers } k \geq 2
\end{gathered}
$$

Show that the sequence $2 s_{0}+3 t_{0}, 2 s_{1}+3 t_{1}, 2 s_{2}+3 t_{2}, \ldots$ also satisfies the same relation. In other words, show that

$$
2 s_{k}+3 t_{k}=5\left(2 s_{k-1}+3 t_{k-1}\right)-4\left(2 s_{k-2}+3 t_{k-2}\right)
$$

for all integers $k \geq 2$. Do not use Lemma 5.8.2.
19. Show that if r, s, a_{0}, and a_{1} are numbers with $r \neq s$, then there exist unique numbers C and D so that

$$
\begin{aligned}
C+D & =a_{0} \\
C r+D s & =a_{1} .
\end{aligned}
$$

20. Show that if r is a nonzero real number, k and m are distinct integers, and a_{k} and a_{m} are any real numbers, then there exist unique real numbers C and D so that

$$
\begin{aligned}
C r^{k}+k D r^{k} & =a_{k} \\
C r^{m}+l D r^{m} & =a_{m}
\end{aligned}
$$

H 21. Prove Theorem 5.8 .5 for the case where the values of C and D are determined by a_{0} and a_{1}.

Exercises 22 and 23 are intended for students who are familiar with complex numbers.
22. Find an explicit formula for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ that satisfies

$$
a_{k}=2 a_{k-1}-2 a_{k-2} \quad \text { for all integers } k \geq 2
$$

with initial conditions $a_{0}=1$ and $a_{1}=2$.
23. Find an explicit formula for a sequence $b_{0}, b_{1}, b_{2}, \ldots$ that satisfies

$$
b_{k}=2 b_{k-1}-5 b_{k-2} \quad \text { for all integers } k \geq 2
$$

with initial conditions $b_{0}=1$ and $b_{1}=1$.
24. The numbers $\frac{1+\sqrt{5}}{2}$ and $\frac{1-\sqrt{5}}{2}$ that appear in the explicit formula for the Fibonacci sequence are related to a quantity called the golden ratio in Greek mathematics. Consider a rectangle of length ϕ units and height 1 , where $\phi>1$.

Divide the rectangle into a rectangle and a square as shown in the preceding diagram. The square is 1 unit on each side, and the rectangle has sides of lengths 1 and $\phi-1$.

The ancient Greeks considered the outer rectangle to be perfectly proportioned (saying that the lengths of its sides were in a golden ratio to each other) if the ratio of the length to the width of the outer rectangle equaled the ratio of the length to the width of the inner rectangle. That is,

$$
\frac{\phi}{1}=\frac{1}{\phi-1}
$$

a. Show that ϕ satisfies the following quadratic equation: $t^{2}-t-1=0$.
b. Find the two solutions of $t^{2}-t-1=0$ and call them ϕ_{1} and ϕ_{2}.
c. Express the explicit formula for the Fibonacci sequence in terms of ϕ_{1} and ϕ_{2}.

