Exercise Set 5.8

- Which of the following are second-order linear homogeneous recurrence relations with constant coefficients?
 a. a_k = 2a_{k-1} 5a_{k-2} b. b_k = kb_{k-1} + b_{k-2} c. c_k = 3c_{k-1} · c²_{k-2} d. d_k = 3d_{k-1} + d_{k-2}
 - e. $r_k = r_{k-1} r_{k-2} 2$ f. $s_k = 10s_{k-2}$
- 2. Which of the following are second-order linear homogeneous recurrence relations with constant coefficients?
 a. a_k = (k 1)a_{k-1} + 2ka_{k-2}
 b. b_k = -b_{k-1} + 7b_{k-2}
 c. c_k = 3c_{k-1} + 1
 d. d_k = 3d²_{k-1} + d_{k-2}
 e. r_k = r_{k-1} 6r_{k-3}
 f. s_k = s_{k-1} + 10s_{k-2}

3. Let a_0, a_1, a_2, \ldots be the sequence defined by the explicit formula

 $a_n = C \cdot 2^n + D$ for all integers $n \ge 0$,

where C and D are real numbers.

- **a.** Find C and D so that $a_0 = 1$ and $a_1 = 3$. What is a_2 in this case?
- b. Find C and D so that $a_0 = 0$ and $a_1 = 2$. What is a_2 in this case?

Let b₀, b₁, b₂, ... be the sequence defined by the explicit formula

 $b_n = C \cdot 3^n + D(-2)^n$ for all integers $n \ge 0$,

where C and D are real numbers.

- **a.** Find C and D so that $b_0 = 0$ and $b_1 = 5$. What is b_2 in this case?
- b. Find C and D so that $b_0 = 3$ and $b_1 = 4$. What is b_2 in this case?
- 5. Let a_0, a_1, a_2, \ldots be the sequence defined by the explicit formula

 $a_n = C \cdot 2^n + D$ for all integers $n \ge 0$,

where C and D are real numbers. Show that for any choice of C and D,

$$a_k = 3a_{k-1} - 2a_{k-2}$$
 for all integers $k \ge 2$.

Let b₀, b₁, b₂,... be the sequence defined by the explicit formula

 $b_n = C \cdot 3^n + D(-2)^n$ for all integers $n \ge 0$,

where C and D are real numbers. Show that for any choice of C and D,

 $b_k = b_{k-1} + 6b_{k-2}$ for all integers $k \ge 2$.

7. Solve the system of equations in Example 5.8.4 to obtain

$$C = \frac{1+\sqrt{5}}{2\sqrt{5}}$$
 and $D = \frac{-(1-\sqrt{5})}{2\sqrt{5}}$.

In each of 8–10: (a) suppose a sequence of the form $1.t.t^2.t^3...t^n...$ where $t \neq 0$, satisfies the given recurrence relation (but not necessarily the initial conditions), and find all possible values of t: (b) suppose a sequence satisfies the given initial conditions as well as the recurrence relation, and find an explicit formula for the sequence.

- 8. $a_k = 2a_{k-1} + 3a_{k-2}$, for all integers $k \ge 2$ $a_0 = 1, a_1 = 2$
- 9. $b_k = 7b_{k-1} 10b_{k-2}$, for all integers $k \ge 2$ $b_0 = 2, b_1 = 2$
- 10. $c_k = c_{k-1} + 6c_{k-2}$, for all integers $k \ge 2$ $c_0 = 0, c_1 = 3$

In each of 11–16 suppose a sequence satisfies the given recurrence relation and initial conditions. Find an explicit formula for the sequence.

- 11. $d_k = 4d_{k-2}$, for all integers $k \ge 2$ $d_0 = 1, d_1 = -1$
- 12. $e_k = 9e_{k-2}$, for all integers $k \ge 2$ $e_0 = 0, e_1 = 2$

- **13.** $r_k = 2r_{k-1} r_{k-2}$, for all integers $k \ge 2$ $r_0 = 1, r_1 = 4$
- 14. $s_k = -4s_{k-1} 4s_{k-2}$, for all integers $k \ge 2$ $s_0 = 0, \ s_1 = -1$
- 15. $t_k = 6t_{k-1} 9t_{k-2}$, for all integers $k \ge 2$ $t_0 = 1, t_1 = 3$
- **H** 16. $s_k = 2s_{k-1} + 2s_{k-2}$, for all integers $k \ge 2$ $s_0 = 1, s_1 = 3$
 - 17. Find an explicit formula for the sequence of exercise 39 in Section 5.6
 - 18. Suppose that the sequences s_0, s_1, s_2, \ldots and t_0, t_1, t_2, \ldots both satisfy the same second-order linear homogeneous recurrence relation with constant coefficients:

$$s_k = 5s_{k-1} - 4s_{k-2}$$
 for all integers $k \ge 2$,
 $t_k = 5t_{k-1} - 4t_{k-2}$ for all integers $k \ge 2$.

Show that the sequence $2s_0 + 3t_0$, $2s_1 + 3t_1$, $2s_2 + 3t_2$, ... also satisfies the same relation. In other words, show that

$$2s_k + 3t_k = 5(2s_{k-1} + 3t_{k-1}) - 4(2s_{k-2} + 3t_{k-2})$$

for all integers $k \ge 2$. Do not use Lemma 5.8.2.

19. Show that if r, s, a_0 , and a_1 are numbers with $r \neq s$, then there exist unique numbers C and D so that

$$C + D = a_0$$
$$Cr + Ds = a_1.$$

20. Show that if r is a nonzero real number, k and m are distinct integers, and a_k and a_m are any real numbers, then there exist unique real numbers C and D so that

$$Cr^{k} + kDr^{k} = a_{k}$$
$$Cr^{m} + lDr^{m} = a_{m}.$$

H 21. Prove Theorem 5.8.5 for the case where the values of C and D are determined by a_0 and a_1 .

Exercises 22 and 23 are intended for students who are familiar with complex numbers.

22. Find an explicit formula for a sequence a_0, a_1, a_2, \ldots that satisfies

$$a_k = 2a_{k-1} - 2a_{k-2}$$
 for all integers $k \ge 2$
with initial conditions $a_0 = 1$ and $a_1 = 2$.

23. Find an explicit formula for a sequence b_0, b_1, b_2, \ldots that satisfies

 $b_k = 2b_{k-1} - 5b_{k-2}$ for all integers $k \ge 2$

with initial conditions $b_0 = 1$ and $b_1 = 1$.

328 Chapter 5 Sequences, Mathematical Induction, and Recursion

24. The numbers $\frac{1+\sqrt{5}}{2}$ and $\frac{1-\sqrt{5}}{2}$ that appear in the explicit formula for the Fibonacci sequence are related to a quantity called the *golden ratio* in Greek mathematics. Consider a rectangle of length ϕ units and height 1, where $\phi > 1$.

Divide the rectangle into a rectangle and a square as shown in the preceding diagram. The square is 1 unit on each side, and the rectangle has sides of lengths 1 and $\phi - 1$. The ancient Greeks considered the outer rectangle to be perfectly proportioned (saying that the lengths of its sides were in a *golden ratio* to each other) if the ratio of the length to the width of the outer rectangle equaled the ratio of the length to the width of the inner rectangle. That is,

$$\frac{\phi}{1} = \frac{1}{\phi - 1}.$$

- a. Show that ϕ satisfies the following quadratic equation: $t^2 - t - 1 = 0$.
- b. Find the two solutions of $t^2 t 1 = 0$ and call them ϕ_1 and ϕ_2 .
- c. Express the explicit formula for the Fibonacci sequence in terms of ϕ_1 and ϕ_2 .