Exercise Set 6.1*

- 1. In each of (a)-(f), answer the following questions: Is $A \subseteq B$? Is $B \subseteq A$? Is either A or B a proper subset of the other?
 - **a.** $A = \{2, \{2\}, (\sqrt{2})^2\}, B = \{2, \{2\}, \{\{2\}\}\}\$

b. $A = \{3, \sqrt{5^2 - 4^2}, 24 \mod 7\}, B = \{8 \mod 5\}$

- **c.** $A = \{\{1, 2\}, \{2, 3\}\}, B = \{1, 2, 3\}$
- d. $A = \{a, b, c\}, B = \{\{a\}, \{b\}, \{c\}\}\}$
- **e.** $A = {\sqrt{16}, \{4\}}, B = \{4\}$
- f. $A = \{x \in \mathbb{R} \mid \cos x \in \mathbb{Z}\}, B = \{x \in \mathbb{R} \mid \sin x \in \mathbb{Z}\}$

- **2.** Complete the proof from Example 6.1.3: Prove that $B \subseteq A$ where
 - $A = \{m \in \mathbb{Z} \mid m = 2a \text{ for some integer } a\}$
 - and $B = \{n \in \mathbb{Z} \mid n = 2b - 2 \text{ for some integer } b\}$

* For exercises with blue numbers or letters, solutions are given in Appendix B. The symbol H indicates that only a hint or a partial solution is given. The symbol ★ signals that an exercise is more challenging than usual.

3. Let sets R, S, and T be defined as follows:

 $R = \{x \in \mathbb{Z} \mid x \text{ is divisible by 2}\}\$

 $S = \{ y \in \mathbb{Z} \mid y \text{ is divisible by } 3 \}$

 $T = \{z \in \mathbb{Z} \mid z \text{ is divisible by 6}\}\$

- a. Is $R \subseteq T$? Explain.
- **b.** Is $T \subseteq R$? Explain.
- c. Is $T \subseteq S$? Explain.
- 4. Let $A = \{n \in \mathbb{Z} \mid n = 5r \text{ for some integer } r\}$ and $B = \{m \in \mathbb{Z} \mid m = 20s \text{ for some integer } s\}.$
 - a. Is $A \subseteq B$? Explain.
- b. Is $B \subseteq A$? Explain.
- 5. Let $C = \{n \in \mathbb{Z} \mid n = 6r 5 \text{ for some integer } r\}$ and $D = \{m \in \mathbb{Z} \mid m = 3s + 1 \text{ for some integer } s\}.$ Prove or disprove each of the following statements.
 - a. $C \subseteq D$
- b. $D \subseteq C$
- 6. Let $A = \{x \in \mathbb{Z} \mid x = 5a + 2 \text{ for some integer } a\}$, $B = \{y \in \mathbb{Z} \mid y = 10b - 3 \text{ for some integer } b\}$, and $C = \{z \in \mathbb{Z} \mid z = 10c + 7 \text{ for some integer } c\}.$ Prove or disprove each of the following statements.
 - a. $A \subseteq B$
- b. $B \subseteq A$
- H c. B = C
- 7. Let $A = \{x \in \mathbb{Z} \mid x = 6a + 4 \text{ for some integer } a\}$, $B = \{y \in \mathbb{Z} \mid y = 18b - 2 \text{ for some integer } b\}, \text{ and }$ $C = \{z \in \mathbb{Z} \mid z = 18c + 16 \text{ for some integer } c\}.$ Prove or disprove each of the following statements. a. $A \subseteq B$
- b. $B \subseteq A$
- c. B = C
- 8. Write in words how to read each of the following out loud. Then write the shorthand notation for each set.
 - **a.** $\{x \in U \mid x \in A \text{ and } x \in B\}$
 - b. $\{x \in U \mid x \in A \text{ or } x \in B\}$
 - c. $\{x \in U \mid x \in A \text{ and } x \notin B\}$
 - d. $\{x \in U \mid x \notin A\}$
- 9. Complete the following sentences without using the symbols \cup , \cap , or -.
 - **a.** $x \notin A \cup B$ if, and only if, ____.
 - b. $x \notin A \cap B$ if, and only if, _____.
 - c. $x \notin A B$ if, and only if,
- 10. Let $A = \{1, 3, 5, 7, 9\}$, $B = \{3, 6, 9\}$, and $C = \{2, 4, 6, 8\}$. Find each of the following:
 - a. $A \cup B$
- **b.** $A \cap B$
- c. $A \cup C$
- d. $A \cap C$
- e. A Bf. B-Ag. $B \cup C$ h. $B \cap C$
- 11. Let the universal set be the set R of all real numbers and let $A = \{x \in \mathbb{R} \mid 0 < x \le 2\}, B = \{x \in \mathbb{R} \mid 1 \le x < 4\}, \text{ and }$
 - $C = \{x \in \mathbb{R} \mid 3 \le x < 9\}$. Find each of the following:
 - a. $A \cup B$
- b. $A \cap B$
- c. Ac
- d. $A \cup C$

- e. $A \cap C$
- f. B^c
- g. $A^c \cap B^c$

- h. $A^c \cup B^c$ i. $(A \cap B)^c$ i. $(A \cup B)^c$
- 12. Let the universal set be the set R of all real numbers and let $A = \{x \in \mathbb{R} \mid -3 \le x \le 0\}, B = \{x \in \mathbb{R} \mid -1 < x < 2\},\$ and $C = \{x \in \mathbb{R} \mid 6 < x \le 8\}$. Find each of the following:
 - a. $A \cup B$
- b. $A \cap B$
- c. Ac
- d. $A \cup C$

- e. $A \cap C$
- h. $A^c \cup B^c$
- f. B^c
- i. $(A \cap B)^c$
- g. $A^c \cap B^c$ j. $(A \cup B)^c$

- 13. Indicate which of the following relationships are true and which are false:
 - a. $\mathbf{Z}^+ \subseteq \mathbf{Q}$
- b. $\mathbf{R}^- \subseteq \mathbf{Q}$
- c. $\mathbf{Q} \subseteq \mathbf{Z}$
- d. $Z^{-} \cup Z^{+} = Z$
- e. $\mathbf{Z}^- \cap \mathbf{Z}^+ = \emptyset$ g. $\mathbf{Q} \cup \mathbf{Z} = \mathbf{Q}$
- f. $\mathbf{Q} \cap \mathbf{R} = \mathbf{Q}$ h. $\mathbf{Z}^+ \cap \mathbf{R} = \mathbf{Z}^+$
- i. $\mathbf{Z} \cup \mathbf{Q} = \mathbf{Z}$
- 14. In each of the following, draw a Venn diagram for sets A, B, and C that satisfy the given conditions:
 - **a.** $A \subseteq B$; $C \subseteq B$; $A \cap C = \emptyset$
 - b. $C \subseteq A$; $B \cap C = \emptyset$
- 15. Draw Venn diagrams to describe sets A, B, and C that satisfy the given conditions.
 - a. $A \cap B = \emptyset$, $A \subseteq C$, $C \cap B \neq \emptyset$
 - b. $A \subseteq B, C \subseteq B, A \cap C \neq \emptyset$
 - c. $A \cap B \neq \emptyset$, $B \cap C \neq \emptyset$, $A \cap C = \emptyset$, $A \nsubseteq B$, $C \nsubseteq B$
- 16. Let $A = \{a, b, c\}, B = \{b, c, d\}, \text{ and } C = \{b, c, e\}.$
 - **a.** Find $A \cup (B \cap C)$, $(A \cup B) \cap C$, and $(A \cup B) \cap (A \cup C)$. Which of these sets are equal?
 - b. Find $A \cap (B \cup C)$, $(A \cap B) \cup C$, and
 - $(A \cap B) \cup (A \cap C)$. Which of these sets are equal?
 - c. Find (A B) C and A (B C). Are these sets
- 17. Consider the Venn diagram shown below. For each of (a)-(f), copy the diagram and shade the region corresponding to the indicated set.
 - a. $A \cap B$
- b. $B \cup C$
- c. Ac
- d. $A (B \cup C)$
- e. $(A \cup B)^c$
- f. $A^c \cap B^c$

- 18. a. Is the number 0 in Ø? Why? **b.** Is $\emptyset = \{\emptyset\}$? Why? c. Is $\emptyset \in {\emptyset}$? Why? d. Is $\emptyset \in \emptyset$? Why?
- **19.** Let $A_i = \{i, i^2\}$ for all integers i = 1, 2, 3, 4.
 - a. $A_1 \cup A_2 \cup A_3 \cup A_4 = ?$
 - b. $A_1 \cap A_2 \cap A_3 \cap A_4 = ?$
 - c. Are A_1 , A_2 , A_3 , and A_4 mutually disjoint? Explain.
- 20. Let $B_i = \{x \in \mathbb{R} \mid 0 \le x \le i\}$ for all integers i = 1, 2, 3, 4.
 - a. $B_1 \cup B_2 \cup B_3 \cup B_4 = ?$
 - b. $B_1 \cap B_2 \cap B_3 \cap B_4 = ?$
 - c. Are B_1 , B_2 , B_3 , and B_4 mutually disjoint? Explain.
- **21.** Let $C_i = \{i, -i\}$ for all nonnegative integers i.
 - a. $\bigcup_{i=0}^{4} C_i = ?$
- b. $\bigcap_{i=0}^{4} C_i = ?$

- c. Are C_0, C_1, C_2, \ldots mutually disjoint? Explain.
- d. $\bigcup_{i=0}^{n} C_i = ?$
- e. $\bigcap_{i=0}^{n} C_i = ?$
- f. $\bigcup_{i=1}^{\infty} C_i = ?$
- g. $\bigcap^{\infty} C_i = ?$
- **22.** Let $D_i = \{x \in \mathbb{R} \mid -i \le x \le i\} = [-i, i]$ for all nonnegative integers i.
- a. $\bigcup_{i=0}^4 D_i = ?$ b. $\bigcap_{i=0}^4 D_i = ?$ c. Are D_0, D_1, D_2, \ldots mutually disjoint? Explain.
- d. $\bigcup_{i=0}^{n} D_{i} = ?$ e. $\bigcap_{i=0}^{n} D_{i} = ?$ f. $\bigcup_{i=0}^{\infty} D_{i} = ?$ g. $\bigcap_{i=0}^{\infty} D_{i} = ?$

- 23. Let $V_i = \left\{ x \in \mathbb{R} \mid -\frac{1}{i} \le x \le \frac{1}{i} \right\} = \left[-\frac{1}{i}, \frac{1}{i} \right]$ for all pos-
- a. $\bigcup_{i=1}^4 V_i = ?$ b. $\bigcap_{i=1}^4 V_i = ?$ c. Are V_1, V_2, V_3, \ldots mutually disjoint? Explain.
- d. $\bigcup_{i=1}^{n} V_i = ?$ e. $\bigcap_{i=1}^{n} V_i = ?$

- **24.** Let $W_i = \{x \in \mathbb{R} \mid x > i\} = (i, \infty)$ for all nonnegative integers i.
 - a. $\bigcup_{i=1}^{4} W_i = ?$ b. $\bigcap_{i=1}^{4} W_i = ?$
- - c. Are W_0, W_1, W_2, \ldots mutually disjoint? Explain.
 - d. $\bigcup_{i=0}^{n} W_i = ?$ e. $\bigcap_{i=0}^{n} W_i = ?$ f. $\bigcup_{i=0}^{\infty} W_i = ?$ g. $\bigcap_{i=0}^{\infty} W_i = ?$
- 25. Let $R_i = \left\{ x \in \mathbf{R} \mid 1 \le x \le 1 + \frac{1}{i} \right\} = \left\lceil 1, 1 + \frac{1}{i} \right\rceil$ for all positive integers i.
 - a. $\bigcup_{i=1}^{4} R_i = ?$ b. $\bigcap_{i=1}^{4} R_i = ?$
 - c. Are R_1, R_2, R_3, \ldots mutually disjoint? Explain.
 - d. $\bigcup_{i=1}^{n} R_i = ?$ e. $\bigcap_{i=1}^{n} R_i = ?$
- - f. $\bigcup_{i=1}^{\infty} R_i = ?$ g. $\bigcap_{i=1}^{\infty} R_i = ?$
- 26. Let $S_i = \left\{ x \in \mathbf{R} \mid 1 < x < 1 + \frac{1}{i} \right\} = \left(1, 1 + \frac{1}{i}\right)$ for all positive integers i.
 - a. $\bigcup_{i=1}^{4} S_i = ?$ b. $\bigcap_{i=1}^{4} S_i = ?$
- - i=1 t=1c. Are S_1 , S_2 , S_3 , ... mutually disjoint? Explain.
 - d. $\bigcup_{i=1}^{n} S_i = ?$ e. $\bigcap_{i=1}^{n} S_i = ?$
 - f. $\bigcup_{i=1}^{\infty} S_i = ?$

- 27. **a.** Is $\{\{a, d, e\}, \{b, c\}, \{d, f\}\}\$ a partition of ${a, b, c, d, e, f}$?
 - b. Is $\{\{w, x, v\}, \{u, y, q\}, \{p, z\}\}\$ a partition of $\{p, q, u, v, w, x, y, z\}$?
 - c. Is $\{\{5,4\},\{7,2\},\{1,3,4\},\{6,8\}\}$ a partition of $\{1, 2, 3, 4, 5, 6, 7, 8\}$?
 - **d.** Is $\{\{3, 7, 8\}, \{2, 9\}, \{1, 4, 5\}\}$ a partition of {1, 2, 3, 4, 5, 6, 7, 8, 9}?
 - e. Is {{1, 5}, {4, 7}, {2, 8, 6, 3}} a partition of {1, 2, 3, 4, 5, 6, 7, 8}?
- 28. Let E be the set of all even integers and O the set of all odd integers. Is $\{E, O\}$ a partition of **Z**, the set of all integers? Explain your answer.
- 29. Let **R** be the set of all real numbers. Is $\{\mathbf{R}^+, \mathbf{R}^-, \{0\}\}$ a partition of R? Explain your answer.
- 30. Let \mathbf{Z} be the set of all integers and let

 $A_0 = \{n \in \mathbb{Z} \mid n = 4k, \text{ for some integer } k\},\$

 $A_1 = \{n \in \mathbb{Z} \mid n = 4k + 1, \text{ for some integer } k\},\$

 $A_2 = \{n \in \mathbb{Z} \mid n = 4k + 2, \text{ for some integer } k\}, \text{ and }$

 $A_3 = \{n \in \mathbb{Z} \mid n = 4k + 3, \text{ for some integer } k\}.$

Is $\{A_0, A_1, A_2, A_3\}$ a partition of **Z**? Explain your answer.

- **31.** Suppose $A = \{1, 2\}$ and $B = \{2, 3\}$. Find each of the following:
 - a. $\mathcal{P}(A \cap B)$
- c. $\mathcal{P}(A \cup B)$
- b. $\mathscr{P}(A)$ d. $\mathscr{P}(A \times B)$
- 32. **a.** Suppose $A = \{1\}$ and $B = \{u, v\}$. Find $\mathcal{P}(A \times B)$. b. Suppose $X = \{a, b\}$ and $Y = \{x, y\}$. Find $\mathcal{P}(X \times Y)$.
- 33. a. Find $\mathcal{P}(\emptyset)$. b. Find $\mathcal{P}(\mathcal{P}(\emptyset))$. c. Find $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.
- 34. Let $A_1 = \{1, 2, 3\}, A_2 = \{u, v\}, \text{ and } A_3 = \{m, n\}.$ Find
- each of the following sets:
 - **a.** $A_1 \times (A_2 \times A_3)$ b. $(A_1 \times A_2) \times A_3$ c. $A_1 \times A_2 \times A_3$
- 35. Let $A = \{a, b\}, B = \{1, 2\}, \text{ and } C = \{2, 3\}.$ Find each of the following sets.
 - **a.** $A \times (B \cup C)$
- **b.** $(A \times B) \cup (A \times C)$
- c. $A \times (B \cap C)$
- $d.(A \times B) \cap (A \times C)$
- **36.** Trace the action of Algorithm 6.1.1 on the variables i, j, found, and answer for m = 3, n = 3, and sets A and B represented as the arrays a[1] = u, a[2] = v, a[3] = w, b[1] = w, b[2] = u, and b[3] = v.
- 37. Trace the action of Algorithm 6.1.1 on the variables i, j, found, and answer for m = 4, n = 4, and sets A and B represented as the arrays a[1] = u, a[2] = v, a[3] = w, a[4] = x, b[1] = r, b[2] = u, b[3] = y, b[4] = z.
- 38. Write an algorithm to determine whether a given element x belongs to a given set, which is represented as an array $a[1], a[2], \ldots, a[n].$