Exercise Set 6.2

1. a. To say that an element is in $A \cap(B \cup C)$ means that it is in (1) and in (2)
b. To say that an element is in $(A \cap B) \cup C$ means that it is in (1) or in (2)
c. To say that an element is in $A-(B \cap C)$ means that it is in (1) and not in (2)
2. The following are two proofs that for all sets A and B, $A-B \subseteq A$. The first is less formal, and the second is more formal. Fill in the blanks.
a. Proof: Suppose A and B are any sets. To show that $A-B \subseteq A$, we must show that every element in (1) is in (2) . But any element in $A-B$ is in (3) and not
in (4) (by definition of $A-B$). In particular, such an element is in A.
b. Proof: Suppose A and B are any sets and $x \in A-B$. [We must show that (1).] By definition of set difference, $x \in \underline{(2)}$ and $x \notin(3)$. In particular, $x \in$ (4) /which is what was to be shown].
3. The following is a proof that for all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. Fill in the blanks.
Proof: Suppose A, B, and C are sets and $A \subseteq B$ and $B \subseteq C$. To show that $A \subseteq C$, we must show that every element in (a) is in (b). But given any element in A, that element is in (c) (because $A \subseteq B$), and so that element is also in (d) (because (e)). Hence $A \subseteq C$.
4. The following is a proof that for all sets A and B, if $A \subseteq B$, then $A \cup B \subseteq B$. Fill in the blanks.
Proof: Suppose A and B are any sets and $A \subseteq B$. [We must show that (a).] Let $x \in$ (b). [We must show that (c).] By definition of union, $x \in \frac{(\mathrm{~d})}{(\mathrm{e})} x \in$ (f). In case $x \in \xrightarrow{(\mathrm{~g})}$, then since $A \subseteq B, x \in(\mathrm{~h})$. In case $x \in B$, then clearly $x \in B$. So in either case, $x \in$ (i) las was to. be shown].
5. Prove that for all sets A and $B,(B-A)=B \cap A^{c}$.

H 6. The following is a proof that for any sets A, B, and C, $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$. Fill in the blanks.
Proof: Suppose A, B, and C are any sets.
(1) Proof that $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$:

Let $x \in A \cap(B \cup C)$. [We must show that $x \in(\mathrm{a})$.] By definition of intersection, $x \in \underline{\text { (b) }}$ and $x \in \frac{\text { (c) }}{}$. Thus $x \in A$ and, by definition of union, $x \in B$ or (d).
Case 1 ($x \in A$ and $x \in B$): In this case, by definition of intersection, $x \in \xrightarrow{(\mathrm{e})}$, and so, by definition of union, $x \in(A \cap B) \cup(A \cap C)$.
Case $2(x \in A$ and $x \in C)$: In this case, (f).
Hence in either case, $x \in(A \cap B) \cup(A \cap C)$ las was to be shown].
[So $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$ by definition of subset.]
(2) $(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)$:

Let $x \in(A \cap B) \cup(A \cap C)$. [We must show that (a).] By definition of union, $x \in A \cap B(\mathrm{~b}) \quad x \in A \cap C$.
Case $1(x \in A \cap B)$: In this case, by definition of intersection, $x \in A$ (c) $x \in B$. Since $x \in B$, then by definition of union, $x \in B \cup C$. Hence $x \in A$ and $x \in B \cup C$, and so, by definition of intersection, $x \in$ (d).
Case $2(x \in A \cap C)$: In this case, (e).
In either case, $x \in A \cap(B \cup C)$ [as was to be shown]. [Thus $(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)$ by definition of subset.]
(3) Conclusion: [Since both subset relations have been proved, it follows, by definition of set equality, that (a).]

Use an element argument to prove each statement in 7-19. Assume that all sets are subsets of a universal set U.

H 7. For all sets A and $B,(A \cap B)^{c}=A^{c} \cup B^{c}$.
8. For all sets A and $B,(\mathrm{~A} \cap \mathrm{~B}) \cup\left(\mathrm{A} \cap \mathrm{B}^{c}\right)=\mathrm{A}$.

H 9. For all sets A, B, and C,

$$
(A-B) \cup(C-B)=(A \cup C)-B
$$

10. For all sets A, B, and C,

$$
(A-B) \cap(C-B)=(A \cap C)-B
$$

H 11. For all sets A and $B, A \cup(A \cap B)=A$.
12. For all sets $A, A \cup \emptyset=A$.
13. For all sets A, B, and C, if $A \subseteq B$ then $A \cap C \subseteq B \cap C$.
14. For all sets A, B, and C, if $A \subseteq B$ then $A \cup C \subseteq B \cup C$.
15. For all sets A and B, if $A \subseteq B$ then $B^{c} \subseteq A^{c}$.

H 16. For all sets A, B, and C, if $A \subseteq B$ and $A \subseteq C$ then $A \subseteq B \cap C$.
17. For all sets A, B, and C, if $A \subseteq C$ and $B \subseteq C$ then $A \cup B \subseteq C$.
18. For all sets A, B, and C,

$$
A \times(B \cup C)=(A \times B) \cup(A \times C)
$$

19. For all sets A, B, and C,

$$
A \times(B \cap C)=(A \times B) \cap(A \times C)
$$

20. Find the mistake in the following "proof" that for all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.
"Proof: Suppose A, B, and C are sets such that $A \subseteq B$ and $B \subseteq C$. Since $A \subseteq B$, there is an element x such that $x \in A$ and $x \in B$. Since $B \subseteq C$, there is an element x such that $x \in B$ and $x \in C$. Hence there is an element x such that $x \in A$ and $x \in C$ and so $A \subseteq C$."

H 21. Find the mistake in the following "proof."
"Theorem:" For all sets A and $B, A^{c} \cup B^{c} \subseteq(A \cup B)^{c}$.
"Proof: Suppose A and B are sets, and $x \in A^{c} \cup B^{c}$. Then $x \in A^{c}$ or $x \in B^{c}$ by definition of union. It follows that $x \notin A$ or $x \notin B$ by definition of complement, and so $x \notin A \cup B$ by definition of union. Thus $x \in(A \cup B)^{c}$ by definition of complement, and hence $A^{c} \cup B^{c} \subseteq$ $(A \cup B)^{c}$."
22. Find the mistake in the following "proof" that for all sets A and $B,(A-B) \cup(A \cap B) \subseteq A$.
"Proof: Suppose A and B are sets, and suppose $x \in$ $(A-B) \cup(A \cap B)$. If $x \in A$ then $x \in A-B$. Then, by definition of difference, $x \in A$ and $x \notin B$. Hence $x \in A$, and so $(A-B) \cup(A \cap B) \subseteq A$ by definition of subset."
23. Consider the Venn diagram below.

a. Illustrate one of the distributive laws by shading in the region corresponding to $A \cup(B \cap C)$ on one copy of the diagram and $(A \cup B) \cap(A \cup C)$ on another.
b. Illustrate the other distributive law by shading in the region corresponding to $A \cap(B \cup C)$ on one copy of the diagram and $(A \cap B) \cup(A \cap C)$ on another.
c. Illustrate one of De Morgan's laws by shading in the region corresponding to $(A \cup B)^{c}$ on one copy of the diagram and $A^{c} \cap B^{c}$ on the other. (Leave the set C out of your diagrams.)
d. Illustrate the other De Morgan's law by shading in the region corresponding to $(A \cap B)^{c}$ on one copy of the diagram and $A^{c} \cup B^{c}$ on the other. (Leave the set C out of your diagrams.)
24. Fill in the blanks in the following proof that for all sets A and $B,(A-B) \cap(B-A)=\emptyset$.

Proof: Let A and B be any sets and supppose $(A-B) \cap$ $(B-A) \neq \emptyset$. That is, suppose there were an element x in (a). By definition of (b),$x \in A-B$ and $x \in$ (c). Then by definition of set difference, $x \in A$ and $x \notin B$ and $x \in(\mathrm{~d})$ and $x \notin \xrightarrow{\text { (e) }}$. In particular $x \in A$ and $x \notin$ (f), which is a contradiction. Hence lthe supposition that $(A-B) \cap(B-A) \neq \emptyset$ is false, and sol (g).

Use the element method for proving a set equals the empty set to prove each statement in $25-35$. Assume that all sets are subsets of a universal set U.
25. For all sets A and $B,(\mathrm{~A} \cap \mathrm{~B}) \cap\left(\mathrm{A} \cap \mathrm{B}^{\mathrm{c}}\right)=\emptyset$.
26. For all sets A, B, and C,

$$
(A-C) \cap(B-C) \cap(A-B)=\emptyset
$$

27. For all subsets A of a universal set $U, A \cap A^{c}=\emptyset$.
28. If U denotes a universal set, then $U^{c}=\emptyset$.
29. For all sets $A, A \times \emptyset=\emptyset$.
30. For all sets A and B, if $A \subseteq B$ then $A \cap B^{c}=\emptyset$.
31. For all sets A and B, if $B \subseteq A^{c}$ then $A \cap B=\emptyset$.
32. For all sets A, B, and C, if $A \subseteq B$ and $B \cap C=\emptyset$ then $A \cap C=\emptyset$.
33. For all sets A, B, and C, if $C \subseteq B-A$, then $A \cap C=\emptyset$.
34. For all sets A, B, and C,

$$
\text { if } B \cap C \subseteq A \text {, then }(C-A) \cap(B-A)=\emptyset
$$

35. For all sets A, B, C, and D,

$$
\text { if } A \cap C=\emptyset \text { then }(A \times B) \cap(C \times D)=\emptyset
$$

Prove each statement in 36-41.
H 36. For all sets A and B,
a. $(A-B) \cup(B-A) \cup(A \cap B)=A \cup B$
b. The sets $(A-B),(B-A)$, and $(A \cap B)$ are mutually disjoint.
37. For all integers $n \geq 1$, if A and $B_{1}, B_{2}, B_{3}, \ldots$ are any sets, then

$$
A \cap\left(\bigcup_{i=1}^{n} B_{i}\right)=\bigcup_{i=1}^{n}\left(A \cap B_{i}\right)
$$

H 38. For all integers $n \geq 1$, if $A_{1}, A_{2}, A_{3}, \ldots$ and B are any sets, then

$$
\bigcup_{i=1}^{n}\left(A_{i}-B\right)=\left(\bigcup_{i=1}^{n} A_{i}\right)-B
$$

39. For all integers $n \geq 1$, if $A_{1}, A_{2}, A_{3}, \ldots$ and B are any sets, then

$$
\bigcap_{i=1}^{n}\left(A_{i}-B\right)=\left(\bigcap_{i=1}^{n} A_{i}\right)-B .
$$

40. For all integers $n \geq 1$, if A and $B_{1}, B_{2}, B_{3}, \ldots$ are any sets, then

$$
\bigcup_{i=1}^{n}\left(A \times B_{i}\right)=A \times\left(\bigcup_{i=1}^{n} B_{i}\right)
$$

41. For all integers $n \geq 1$, if A and $B_{1}, B_{2}, B_{3}, \ldots$ are any sets, then

$$
\bigcap_{i=1}^{n}\left(A \times B_{i}\right)=A \times\left(\bigcap_{i=1}^{n} B_{i}\right)
$$

