29. For all integers n, if n is odd then 3n + 5 is even.

Proof:

Let n be an arbitrary odd integer

$n = 2r + 1$ for some $r \in \mathbb{Z}$	← Definition of odd
3n + 5 = 3(2r + 1) + 5	\leftarrow Substitution
= 6r + 3 + 5	← Distributive law (basic algebra)
= 6r + 8	← Addition (basic algebra)
= 2(3r + 4)	← Distributive law (basic algebra)
Let s = 3r + 4	
then s is an integer	← Sums, differences, and products of integers are integers
therefore $3n + 5 = 2s$	← Definition of even
<i>Q. E. D.</i>	

· . .