p. 162 no. 49 "The difference of any two even integers is even."

Theorem: The difference of any two even integers is even

Proof: Let m and n be arbitrary even numbers such that $m \in \mathbb{Z}$ and $n \in \mathbb{Z}$.

Exam 2

$m = 2r$ for some $r \in \mathbb{Z}$	Definition of even
$n = 2s$ for some $s \in \mathbb{Z}$	Definition of even
m-n=2r-2s	Substitution
m-n=2(r-s)	Fundamental theorem of algebra
Let $\mathbf{k} = r - s \in \mathbb{Z}$	Closure of integers in Z
m-n=2k	Even by definition of even