seytroy 2

p. 162 no. 49 "The difference of any two even integers is even."

Theorem: The difference of any two even integers is even

Proof: Let m and n be arbitrary even numbers such that $m \in \mathbb{Z}$ and $n \in \mathbb{Z}$.

$$
\begin{array}{ll}
m=2 r \text { for some } r \in \mathbb{Z} & \text { Definition of even } \\
n=2 s \text { for some } s \in \mathbb{Z} & \text { Definition of even } \\
m-n=2 r-2 s & \text { Substitution } \\
m-n=2(r-s) & \text { Fundamental theorem of algebra }
\end{array}
$$

$$
\begin{array}{ll}
\text { Let } k=r-s \in \mathbb{Z} & \text { Closure of integers in } \mathbb{Z} \\
m-n=2 k & \text { Even by definition of even }
\end{array}
$$

