THEOREM: \#52
For all integers m, if $m>2$ then $m^{2}-4$ is composite.
PROOF: Disproof by counterexample.
Find an integer $m>2$ such that $m^{2}-4$ is prime.
Let $n=m^{2}-4$ where $n \in \mathbb{Z}$
(Closure of difference in \mathbb{Z})
If n is prime, then \forall positive integers r and s, (Definition of prime) if $n=r \cdot s$ then $r=1$ or $s=1$

Let $m=3$
(Counterexample)
$n=m^{2}-4$
$=3^{2}-4$
(Substitution)
$=9-4$
(Basic algebra)
$n=5$
Let $r=5$ and $s=1$ such that $5=5 \cdot 1$
(Closure of multiplication)
Because 5 and 1 are the only tow distinct integers
(Definition for prime)
divisors of n and $r=1$ or $s=1$
Therefore, 5 is prime and
(Conclusion)
$m^{2}-4$ is not composite for all integers $m>2$
(Disproof)

G.E.D.

