ı	F	il	ı	in	th	10	red	ŀ	าม	hl	h	29	hel	low:
ı		ш		11 1	- u	ı	ıcu	- k	Ju	IJΙ	U	5	ne	IUVV.

name: _____

Situation 1. A population has a Normally distributed variable x. From this population we draw a Simple Random Sample of size O The mean, μ , of the population is unknown. The standard deviation of the population, σ , is known. The mean of the sample, \overline{x} , is computed. The population variable x has the distribution O and the sample mean \overline{x} has the distribution O Here is the picture:

x distribution -> $N(\mu, \sigma)$ $\mu = ?$ σ is known

Simple Random Sample

 \overline{x} distribution -> mean = \overline{x} size =

Confidence Intervals

We can estimate μ with

Where is determined by the confidence level C. The table below gives for some common values of C:

Hypothesis Testing.

The Null Hypothesis:

 H_0 : $\mu = \mu_0$

The Alternative Hypothesis:

 H_a : $μ > μ_0$

First compute the statistic using the formula:

Then for significance level and say that we have

determine Then if

we reject the

