| ı | F | il | ı | in | th | 10 | red | ŀ | าม | hl | h | 29 | hel | low: | |---|---|----|---|------|-----|----|-----|-----|----|-----|---|----------|-----|-------| | ı | | ш | | 11 1 | - u | ı | ıcu | - k | Ju | IJΙ | U | 5 | ne | IUVV. | name: _____ Situation 1. A population has a Normally distributed variable x. From this population we draw a Simple Random Sample of size O The mean, μ , of the population is unknown. The standard deviation of the population, σ , is known. The mean of the sample, \overline{x} , is computed. The population variable x has the distribution O and the sample mean \overline{x} has the distribution O Here is the picture: x distribution -> $N(\mu, \sigma)$ $\mu = ?$ σ is known Simple Random Sample \overline{x} distribution -> mean = \overline{x} size = ## **Confidence Intervals** We can estimate μ with Where is determined by the confidence level C. The table below gives for some common values of C: ## Hypothesis Testing. The Null Hypothesis: H_0 : $\mu = \mu_0$ The Alternative Hypothesis: H_a : $μ > μ_0$ First compute the statistic using the formula: Then for significance level and say that we have determine Then if we reject the